Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 17898-17907, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912929

RESUMO

The interfaces of weakly hydrated mineral substrates have been shown to serve as catalytic sites for chemical reactions that may not be accessible in the gas phase or under bulk conditions. Currently known mechanisms for the formation of reactive oxygen species (ROS) from nitrogen dioxide (NO2) involve NO2 dimerization. Here, we report the formation of the ROS HONO via a mechanism involving simple adsorption of a single NO2 molecule on a weakly hydrated calcite substrate. First-principles molecular dynamics simulations coupled with enhanced sampling techniques show how an adsorbed water sublayer can enhance NO2 adsorption on calcite compared to adsorption on a bare dry substrate. On the weakly hydrated calcite surface, an interfacial electric field facilitates proton extraction from water, thus allowing HONO formation from a single adsorbed NO2, i.e., without the need for the formation of a NO2 dimer precomplex. HONO formation on calcite is kinetically more favorable than that in the gas phase, with a reaction barrier of 14 kcal/mol on the weakly hydrated calcite surface compared to 27 kcal/mol in the gas phase. Further photocatalysed HONO production by visible light and HONO dissociation are hampered on calcite, unlike the process on silica. NO2 is a significant anthropogenic pollutant, and understanding its chemistry is crucial for explaining the high ROS levels and haze formation in polluted areas or prebiotic ROS generation. These findings emphasize how mineral substrates under water-restricted hydration conditions can trigger chemical pathways that are unexpected in the gas phase or under bulk conditions.

2.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38108483

RESUMO

We report state-of-the-art first-principles molecular dynamics results on the heterogeneous chemical uptake of NO2, a major anthropogenic pollutant, on the dry and wet hydroxylated surface of α-quartz, which is a significant component of silica-based catalysts and atmospheric dust aerosols. Our investigation spotlights an unexpected chemical pathway by which NO2 (i) can be adsorbed as HONO by deprotonation of interfacial silanols (i.e., -Si-OH group) on silica, (ii) can be barrierless converted to nitric acid, and (iii) can finally dissociated to surface bounded NO and hydroxyl gas phase radicals. This chemical pathway does not invoke any previously experimentally postulated NO2 dimerization, dimerization that is less likely to occur at low NO2 concentrations. Moreover, water significantly catalyzes the HONO formation and the dissociation of nitric acid into surface-bounded NO and OH radicals, while visible light adsorption can further promote these chemical transformations. This work highlights how water-restricted solvation regimes on common mineral substrates are likely to be a source of reactive oxygen species, and it offers a theoretical framework for further and desirable experimental efforts, aiming to better constrain trace gases/mineral interactions at different relative humidity conditions.

3.
ACS Omega ; 9(1): 771-780, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222595

RESUMO

Hydration of carbon dioxide in water solution is the rate limiting step for the CO2 mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO2 hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO2 hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO2 hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA