Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 11: 510600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041851

RESUMO

Mitochondrial Ca2+ handling is accomplished by balancing Ca2+ uptake, primarily via the Ru360-sensitive mitochondrial calcium uniporter (MCU), Ca2+ buffering in the matrix and Ca2+ efflux mainly via Ca2+ ion exchangers, such as the Na+/Ca2+ exchanger (NCLX) and the Ca2+/H+ exchanger (CHE). The mechanism of CHE in cardiac mitochondria is not well-understood and its contribution to matrix Ca2+ regulation is thought to be negligible, despite higher expression of the putative CHE protein, LETM1, compared to hepatic mitochondria. In this study, Ca2+ efflux via the CHE was investigated in isolated rat cardiac mitochondria and permeabilized H9c2 cells. Mitochondria were exposed to (a) increasing matrix Ca2+ load via repetitive application of a finite CaCl2 bolus to the external medium and (b) change in the pH gradient across the inner mitochondrial membrane (IMM). Ca2+ efflux at different matrix Ca2+ loads was revealed by inhibiting Ca2+ uptake or reuptake with Ru360 after increasing number of CaCl2 boluses. In Na+-free experimental buffer and with Ca2+ uptake inhibited, the rate of Ca2+ efflux and steady-state free matrix Ca2+ [mCa2+]ss increased as the number of administered CaCl2 boluses increased. ADP and cyclosporine A (CsA), which are known to increase Ca2+ buffering while maintaining a constant [mCa2+]ss, decreased the rate of Ca2+ efflux via the CHE, with a significantly greater decrease in the presence of ADP. ADP also increased Ca2+ buffering rate and decreased [mCa2+]ss. A change in the pH of the external medium to a more acidic value from 7.15 to 6.8∼6.9 caused a twofold increase in the Ca2+ efflux rate, while an alkaline change in pH from 7.15 to 7.4∼7.5 did not change the Ca2+ efflux rate. In addition, CHE activation was associated with membrane depolarization. Targeted transient knockdown of LETM1 in permeabilized H9c2 cells modulated Ca2+ efflux. The results indicate that Ca2+ efflux via the CHE in cardiac mitochondria is modulated by acidic buffer pH and by total matrix Ca2+. A mechanism is proposed whereby activation of CHE is sensitive to changes in both the matrix Ca2+ buffering system and the matrix free Ca2+ concentration.

2.
Hear Res ; 361: 36-44, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453003

RESUMO

The purpose of this study was to test whether a Kv3 potassium channel modulator, AUT00063, has therapeutic potential for reversing noise-induced increases in spontaneous neural activity, a state that is widely believed to underlie noise-induced tinnitus. Recordings were conducted in noise exposed and control hamsters from dorsal cochlear nucleus (DCN) fusiform cells before and following intraperitoneal administration of AUT00063 (30 mg/kg). Fusiform cell spontaneous activity was increased in sound-exposed animals, approximating levels that were nearly 50% above those of controls. Administration of AUT00063 resulted in a powerful suppression of this hyperactivity. The first signs of this suppression began 13 min after AUT00063 administration, but activity continued to decline gradually until reaching a floor level which was approximately 60% of pre-drug baseline by 25 min after drug treatment. A similar suppressive effect of AUT00063 was observed in control animals, with onset of suppression first apparent at 13 min post-treatment, but continuing to decline toward a floor level that was 54% of pre-drug baseline and was reached 28 min after drug treatment. In contrast, no suppression of spontaneous activity was observed in animals given similar injections of vehicle (control) solution. The suppressive effect of AUT00063 was achieved without significantly altering heart rate and with minimal effects on response thresholds, supporting the interpretation that the reductions of hyperactivity were not a secondary consequence of a more general physiological suppression of the brain or auditory system. These findings suggest that Kv3 channel modulation may be an effective approach to suppressing spontaneous activity in the auditory system and may provide a future avenue for treatment of tinnitus resulting from exposure to intense sound.


Assuntos
Núcleo Coclear/efeitos dos fármacos , Imidazóis/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Ruído/efeitos adversos , Pirimidinas/farmacologia , Canais de Potássio Shaw/efeitos dos fármacos , Animais , Limiar Auditivo/efeitos dos fármacos , Núcleo Coclear/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Imidazóis/uso terapêutico , Masculino , Mesocricetus , Pirimidinas/uso terapêutico , Canais de Potássio Shaw/metabolismo , Fatores de Tempo , Zumbido/tratamento farmacológico
3.
Front Physiol ; 9: 724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140230

RESUMO

Electrical stimulation of the central and peripheral nervous systems - such as deep brain stimulation, spinal cord stimulation, and epidural cortical stimulation are common therapeutic options increasingly used to treat a large variety of neurological and psychiatric conditions. Despite their remarkable success, there are limitations which if overcome, could enhance outcomes and potentially reduce common side-effects. Micromagnetic stimulation (µMS) was introduced to address some of these limitations. One of the most remarkable properties is that µMS is theoretically capable of activating neurons with specific axonal orientations. Here, we used computational electromagnetic models of the µMS coils adjacent to neuronal tissue combined with axon cable models to investigate µMS orientation-specific properties. We found a 20-fold reduction in the stimulation threshold of the preferred axonal orientation compared to the orthogonal direction. We also studied the directional specificity of µMS coils by recording the responses evoked in the inferior colliculus of rodents when a pulsed magnetic stimulus was applied to the surface of the dorsal cochlear nucleus. The results confirmed that the neuronal responses were highly sensitive to changes in the µMS coil orientation. Accordingly, our results suggest that µMS has the potential of stimulating target nuclei in the brain without affecting the surrounding white matter tracts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA