Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Respir Crit Care Med ; 205(7): 783-794, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021019

RESUMO

Rationale: Cystic fibrosis (CF) is caused by mutations in the CFTR (CF transmembrane conductance regulator) gene and is characterized by sustained inflammation. ATP triggers IL-1ß secretion via P2X7R (P2X7 receptor) and activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome. Objectives: To explore the effect of the CFTR modulator elexacaftor/tezacaftor/ivacaftor (Trikafta) on CFTR expression and the ATP/P2X7R signaling axis in monocytes and on circulating proinflammatory markers. Methods: Inflammatory mediators were detected in blood from 42 patients with CF before and after 3 months of Trikafta therapy. Markers of inflammasome activation and IL-1ß secretion were measured in monocytes before and after stimulation with ATP and LPS, in the presence or absence of the P2X7R inhibitor A438079. Measurements and Main Results: P2X7R is overexpressed in CF monocytes, and receptor inhibition decreased NLRP3 expression, caspase-1 activation, and IL-1ß secretion. In vitro and in vivo, P2X7R expression is regulated by CFTR function and intracellular chloride (Cl-) levels. Trikafta therapy restored CFTR expression yet decreased P2X7R in CF monocytes, resulting in normalized Cl- and potassium efflux, and reduced intracellular calcium levels. CFTR modulator therapy decreased circulating levels of ATP and LPS and reduced inflammasome activation and IL-1ß secretion. Conclusions: P2X7R expression is regulated by intracellular Cl- levels and in CF monocytes promotes inflammasome activation. Trikafta therapy significantly increased CFTR protein expression and reduced ATP/P2X7R-induced inflammasome activation. P2X7R may therefore be a promising target for reducing inflammation in patients with CF who are noneligible for Trikafta or other CFTR modulator therapy.


Assuntos
Fibrose Cística , Inflamassomos , Aminofenóis , Benzodioxóis , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos , Indóis , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pirazóis , Piridinas , Quinolinas , Receptores Purinérgicos P2X7/metabolismo
2.
Exp Parasitol ; 235: 108231, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35151653

RESUMO

Fasciola hepatica is a trematode worm that causes fascioliasis, a neglected tropical disease in humans and livestock. To gain insight into the host-parasite interactions that facilitate infection, we have investigated the immunomodulatory properties of the parasite's tegumental coat (FhTeg), a major antigen source that is sloughed off and renewed every 2-3 h as the worm migrates through host tissue. Using mouse models of infection, we have previously shown that FhTeg induces a novel phenotype of dendritic cells that induce anergic CD4+ T-cells. We proposed that this induced state of hyporesponsiveness characterised by suppression of cell proliferation and cytokine secretion was one mechanism by which F. hepatica prevented host protective immunity to support the parasite survival. To determine if the same mechanisms are utilised during human infections, we have now examined the interaction of FhTeg with human PBMCs. FhTeg binds to and modulates cytokine production in human PBMCs, in particular targeting the CD4+ population resulting in reduced levels of TNF, IL-2 and IFNγ and increased markers of anergy. Furthermore, the adoptive transfer of FhTeg stimulated PBMCs to a humanised model of acute graft versus host disease (GvHD) attenuated disease progression by increasing survival and reducing pathological scores. These mice also displayed a significant decrease in the total number of human CD4+ cells expressing TNF, IL-2 and IFNγ in the spleen, liver and lung. This study therefore concurs with evidence from ruminant and murine models of infection suggesting that anergic CD4+ T cells are associated with successful Fasciola hepatica infection and highlights an important role for FhTeg in contributing to the overall immunosuppressive effects of this parasite.


Assuntos
Fasciola hepatica , Fasciolíase , Doença Enxerto-Hospedeiro , Animais , Antígenos de Helmintos , Progressão da Doença , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos BALB C
3.
Mol Ther ; 28(4): 1190-1199, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32059764

RESUMO

MicroRNAs that are overexpressed in cystic fibrosis (CF) bronchial epithelial cells (BEC) negatively regulate CFTR and nullify the beneficial effects of CFTR modulators. We hypothesized that it is possible to reverse microRNA-mediated inhibition of CFTR using CFTR-specific target site blockers (TSBs) and to develop a drug-device combination inhalation therapy for CF. Lead microRNA expression was quantified in a series of human CF and non-CF samples and in vitro models. A panel of CFTR 3' untranslated region (UTR)-specific locked nucleic acid antisense oligonucleotide TSBs was assessed for their ability to increase CFTR expression. Their effects on CFTR activity alone or in combination with CFTR modulators were measured in CF BEC models. TSB encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles was assessed as a proof of principle of delivery into CF BECs. TSBs targeting the CFTR 3' UTR 298-305:miR-145-5p or 166-173:miR-223-3p sites increased CFTR expression and anion channel activity and enhanced the effects of ivacaftor/lumacaftor or ivacaftor/tezacaftor in CF BECs. Biocompatible PLGA-TSB nanoparticles promoted CFTR expression in primary BECs and retained desirable biophysical characteristics following nebulization. Alone or in combination with CFTR modulators, aerosolized CFTR-targeting TSBs encapsulated in PLGA nanoparticles could represent a promising drug-device combination therapy for the treatment for CFTR dysfunction in the lung.


Assuntos
Brônquios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/terapia , MicroRNAs/genética , Oligonucleotídeos/farmacologia , Adulto , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/metabolismo , Combinação de Medicamentos , Sinergismo Farmacológico , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Indóis/farmacologia , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Nanopartículas , Oligonucleotídeos/genética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Quinolonas/farmacologia
4.
Int J Mol Sci ; 21(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012925

RESUMO

Cystic fibrosis (CF) is an autosomal recessive genetic disorder arising from mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Disruption to normal ion homeostasis in the airway results in impaired mucociliary clearance, leaving the lung more vulnerable to recurrent and chronic bacterial infections. The CF lung endures an excess of neutrophilic inflammation, and whilst neutrophil serine proteases are a crucial part of the innate host defence to infection, a surplus of neutrophil elastase (NE) is understood to create a net destructive effect. Alpha-1 antitrypsin (A1AT) is a key antiprotease in the control of NE protease activity but is ineffective in the CF lung due to the huge imbalance of NE levels. Therapeutic strategies to boost levels of protective antiproteases such as A1AT in the lung remain an attractive research strategy to limit the damage from excess protease activity. microRNAs are small non-coding RNA molecules that bind specific cognate sequences to inhibit expression of target mRNAs. The inhibition of miRNAs which target the SERPINA1 (A1AT-encoding gene) mRNA represents a novel therapeutic approach for CF inflammation. This could involve the delivery of antagomirs that bind and sequester the target miRNA, or target site blockers that bind miRNA recognition elements within the target mRNA to prevent miRNA interaction. Therefore, miRNA targeted therapies offer an alternative strategy to drive endogenous A1AT production and thus supplement the antiprotease shield of the CF lung.


Assuntos
Fibrose Cística/genética , MicroRNAs/genética , alfa 1-Antitripsina/genética , Antagomirs/farmacologia , Antagomirs/uso terapêutico , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Elastase de Leucócito/metabolismo , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular , Regulação para Cima , alfa 1-Antitripsina/metabolismo
5.
Biochem Soc Trans ; 46(3): 619-630, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29743276

RESUMO

Non-coding RNAs (ncRNAs) are an abundant class of RNAs that include small ncRNAs, long non-coding RNAs (lncRNA) and pseudogenes. The human ncRNA atlas includes thousands of these specialised RNA molecules that are further subcategorised based on their size or function. Two of the more well-known and widely studied ncRNA species are microRNAs (miRNAs) and lncRNAs. These are regulatory RNAs and their altered expression has been implicated in the pathogenesis of a variety of human diseases. Failure to express a functional cystic fibrosis (CF) transmembrane receptor (CFTR) chloride ion channel in epithelial cells underpins CF. Secondary to the CFTR defect, it is known that other pathways can be altered and these may contribute to the pathophysiology of CF lung disease in particular. For example, quantitative alterations in expression of some ncRNAs are associated with CF. In recent years, there has been a series of published studies exploring ncRNA expression and function in CF. The majority have focussed principally on miRNAs, with just a handful of reports to date on lncRNAs. The present study reviews what is currently known about ncRNA expression and function in CF, and discusses the possibility of applying this knowledge to the clinical management of CF in the near future.


Assuntos
Fibrose Cística/genética , RNA não Traduzido/fisiologia , Animais , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Imunidade Inata/genética , Inflamação/genética , MicroRNAs/fisiologia , Pseudogenes , Resposta a Proteínas não Dobradas
6.
Eur Respir J ; 50(1)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28705940

RESUMO

Eppin is a serine protease inhibitor expressed in male reproductive tissues.The aim of this study was to investigate the localisation and regulation of eppin expression in myeloid and epithelial cell lines, and explore its potential role as a multifunctional host defence protein.Using immunohistochemistry and Western blotting, eppin was detected in the lungs of patients with acute respiratory distress syndrome and cystic fibrosis lung disease. Expression of eppin in monocytic cells was unaffected by stimulation with Toll-like receptor agonists, cytokines and hormone receptor agonists. However, upregulated expression and secretion of eppin was observed following treatment of monocytes with epidermal growth factor. Incubation of recombinant eppin with monocytic cells resulted in significant inhibition of lipopolysaccharide-induced chemokine production. Furthermore, eppin inhibited lipopolysaccharide-induced NF-κB activation by a mechanism which involved accumulation of phosphorylated IκBα. In an in vivo model of lung inflammation induced by lipopolysaccharide, eppin administration resulted in decreased recruitment of neutrophils to the lung with a concomitant reduction in the levels of the neutrophil chemokine macrophage inflammatory protein-2.Overall, these results suggest a role for eppin outside of the reproductive tract and that eppin may have a role in the innate immune response in the lung.


Assuntos
Fibrose Cística/metabolismo , Citocinas/metabolismo , Pulmão/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Masculino , Síndrome do Desconforto Respiratório/genética , Transdução de Sinais , Escarro/química , Receptores Toll-Like/metabolismo
7.
Mol Ther ; 23(1): 24-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25189740

RESUMO

Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.


Assuntos
Anti-Inflamatórios/farmacologia , Elafina/farmacologia , Pulmão/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Líquido da Lavagem Broncoalveolar/química , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Elafina/química , Elafina/genética , Fibronectinas/antagonistas & inibidores , Fibronectinas/metabolismo , Expressão Gênica , Humanos , Cinética , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Inibidores de Proteases/química , Engenharia de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo
8.
Thorax ; 70(5): 426-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770093

RESUMO

INTRODUCTION: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. METHODS: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. RESULTS: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. CONCLUSIONS: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.


Assuntos
Pulmão/metabolismo , Monócitos/efeitos dos fármacos , Proteínas/farmacologia , Serina Endopeptidases/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Humanos , Lipopolissacarídeos , Pulmão/patologia , Testes de Sensibilidade Microbiana , Monócitos/metabolismo , Proteínas/metabolismo , Proteínas Recombinantes/farmacologia , Técnicas de Cultura de Tecidos
9.
Stem Cell Res Ther ; 14(1): 377, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124115

RESUMO

BACKGROUND: Interstitial lung diseases (ILD) are a group of rare lung diseases with severe outcomes. The COST Innovator Grant aims to establish a first-of-a-kind open-access Biorepository of patient-derived induced pluripotent stem cells (iPSC) and to train researchers in the skills required to generate a robust preclinical model of ILD using these cells. This study aims to describe and evaluate the effectiveness of a training course designed to train researchers in iPSC techniques to model ILD. METHODS: 74 researchers, physicians and stakeholders attended the training course in Dublin in May 2022 with 31 trainees receiving teaching in practical iPSC culturing skills. The training course learners were divided into the Hands-on (16 trainees) and Observer groups (15 trainees), with the Observers attending a supervised live-streamed experience of the laboratories skills directly delivered to the Hands-on group. All participants were asked to participate in an evaluation to analyse their satisfaction and knowledge gained during the Training Course, with means compared using t-tests. RESULTS: The gender balance in both groups was predominantly females (77.4%). The Hands-on group consisted mainly of researchers (75%), whereas all participants of the Observer group described themselves as clinicians. All participants in the Hands-on group were at least very satisfied with the training course compared to 70% of the participants in the Observer group. The knowledge assessment showed that the Hands-on group retained significantly more knowledge of iPSC characteristics and culturing techniques compared to the Observers (* < 0.05; p = 0.0457). A comprehensive learning video detailing iPSC culturing techniques was produced and is included with this manuscript. CONCLUSIONS: The majority of participants were highly or very satisfied with the training course and retained significant knowledge about iPSC characteristics and culturing techniques after attending the training course. Overall, our findings demonstrate the feasibility of running hybrid Hands-on and Observer teaching events and underscore the importance of this type of training programme to appeal to a broad spectrum of interested clinicians and researchers particularly in rare disease. The long-term implications of this type of training event requires further study to determine its efficacy and impact on adoption of iPSC disease modelling techniques in participants' laboratories.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Pulmonares Intersticiais , Feminino , Humanos , Masculino , Acesso à Informação , Doenças Pulmonares Intersticiais/terapia
10.
Epigenomics ; 14(2): 65-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802255

RESUMO

Tweetable abstract Important differences in lung disease exist between males and females in symptoms, course of disease and therapeutic response due to molecular, genetic and epigenetic mechanisms related to biological sex.


Assuntos
Pneumopatias , Caracteres Sexuais , Epigênese Genética , Feminino , Humanos , Pneumopatias/genética , Masculino
11.
Expert Rev Respir Med ; 16(7): 737-748, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35833354

RESUMO

INTRODUCTION: The airway epithelium is a key system within the lung. It acts as a physical barrier to inhaled factors, and can actively remove unwanted microbes and particles from the lung via the mucociliary escalator. On a physiological level, it senses the presence of pathogens and initiates innate immune responses to combat their effects. Hydration of the airways is also controlled by the epithelium. Within the cystic fibrosis (CF) lung, these properties are suboptimal and contribute to the pulmonary manifestations of CF. AREAS COVERED: In this review, we discuss how various host and microbial factors can contribute to airway epithelium dysfunction in the CF lung focusing on mechanisms relating to the mucociliary escalator and protease expression and function. We also explore how alterations in microRNA expression can impact the behavior of the airway epithelium. EXPERT OPINION: Notwithstanding the unprecedented benefits that CFTR modulator drugs now provide to the health of CF sufferers, it will be important to delve more deeply into additional mechanisms underpinning CF lung disease such as those illustrated here in an attempt to counteract these aberrant processes and further enhance quality of life for people with CF.


Assuntos
Fibrose Cística , Mucosa Respiratória , Fibrose Cística/patologia , Humanos , Pulmão , Mucosa Respiratória/patologia
12.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551792

RESUMO

Interstitial lung diseases (ILD) are a group of heterogeneous progressive pulmonary disorders, characterised by tissue remodelling and/or fibrotic scarring of the lung parenchyma. ILD patients experience lung function decline with progressive symptoms, poor response to treatment, reduced quality of life and high mortality. ILD can be idiopathic or associated with systemic or connective tissue diseases (CTD) but idiopathic pulmonary fibrosis (IPF) is the most common form. While IPF has a male predominance, women are affected more greatly by CTD and therefore associated ILDs. The mechanisms behind biological sex differences in these progressive lung diseases remain unclear. However, differences in environmental exposures, variable expression of X-chromosome related inflammatory genes and sex hormones play a role. Here, we will outline sex-related differences in the incidence, progression and mechanisms of action of these diseases and discuss existing and novel cellular and pre-clinical studies. Furthermore, we will highlight how sex-differences are not adequately considered in pre-clinical disease models, how gender bias exists in clinical diagnosis and how women are underrepresented in clinical trials. Future action on these observations will hopefully shed light on the role of biological sex in disease development, identify potential targets for intervention and increase female participant numbers in clinical trials.

13.
Front Genet ; 12: 739311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868211

RESUMO

Altered microRNA expression patterns in bronchial brushings from people with versus without cystic fibrosis (CF) relate to functional changes and disease pathophysiology. The expression of microRNAs encoded on the X chromosome is also altered in peripheral blood monocytes of p. Phe508del homozygous versus non-CF individuals. Here we investigate whether levels of the top seven X-linked microRNAs (miR-224-5p, miR-452-5p, miR-450b-5p, miR-542-3p, miR-450a-5p, miR-424-5p, and miR-545-5p) that are significantly increased over 1.5 fold in CF versus non-CF monocytes correlate with lung function. CD14+ monocytes were isolated from males and females with (n = 12) and without cystic fibrosis (n = 12) and examined for the expression of X-linked microRNAs by qRT-PCR array. MicroRNA target mRNA levels were quantified using qRT-PCR. Clinical correlations with lung function data were analysed in the CF cohort. Increasing levels of miR-545-5p correlated moderately with FEV1% predicted (r = -0.4553, p > 0.05) and strongly with exacerbation rate (r = 0.5858, p = 0.0483). miR-224-5p levels were significantly higher in the severe (FEV1 <40%) versus mild (FEV1 ≥80%, p = 0.0377) or moderate (FEV1 40-79%, p = 0.0350) groups. MiR-224-5p expression inversely correlated with lung function (FEV1%: r = -0.5944, p = 0.0457) and positively correlated with exacerbation rates (r = 0.6139, p = 0.0370). These data show that peripheral blood monocyte miR-545-5p and miR-224-5p levels correlate with exacerbation rate, whilst miR-224-5p levels also correlate with lung function in cystic fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA