Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 144(9): 2696-2708, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33856027

RESUMO

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.


Assuntos
Infarto Encefálico/patologia , Encéfalo/patologia , COVID-19/patologia , Hipóxia-Isquemia Encefálica/patologia , Hemorragias Intracranianas/patologia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteriemia/complicações , Encéfalo/metabolismo , Infarto Encefálico/complicações , COVID-19/complicações , COVID-19/fisiopatologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Feminino , Humanos , Hipóxia-Isquemia Encefálica/complicações , Inflamação , Unidades de Terapia Intensiva , Hemorragias Intracranianas/complicações , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Neurônios/patologia , Fagocitose , Fosfoproteínas/metabolismo , Embolia Pulmonar/complicações , Embolia Pulmonar/fisiopatologia , RNA Viral/metabolismo , Diálise Renal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Taxa de Sobrevida , Linfócitos T/patologia , Trombose Venosa/complicações , Trombose Venosa/fisiopatologia
2.
Dev Biol ; 449(1): 21-34, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771304

RESUMO

A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126. In addition to vascular defects observed only in the embryo, loss of miR-126 function in the placenta leads to junctional zone hyperplasia at E15.5 at the expense of the labyrinth, reduced placental volume for nutrient exchange and intra-uterine growth restriction of the embryos. Junctional zone hyperplasia results from increased numbers of proliferating glycogen trophoblast (GlyT) progenitors at E13.5 that give rise to an expanded glycogen trophoblast population at E15.5. Transcriptomic profile of miR-126-/- placentas revealed dysregulation of a large number of GlyT (Prl6a1, Prl7c1, Pcdh12) and trophoblast-specific genes (Tpbpa, Tpbpb, Prld1) and genes with known roles in placental development. We show that miR-126-/- placentas, but not miR-126-/- embryos, display aberrant expression of imprinted genes with important roles in glycogen trophoblasts and junctional zone development, including Igf2, H19, Cdkn1c and Phlda2, during mid-gestation. We also show that miR126-/- placentas display global hypermethylation, including at several imprint control centers. Our findings uncover a novel role for miR-126 in regulating extra-embryonic energy stores, expression of imprinted genes and DNA methylation in the placenta.


Assuntos
Metilação de DNA/genética , Glicogênio/metabolismo , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Humanos , Hiperplasia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Gravidez , Transcriptoma/genética
3.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693406

RESUMO

The stability of tight junctions (TJs) between endothelial cells (ECs) is essential to maintain blood-brain barrier (BBB) function in the healthy brain. Following ischemic stroke, TJ strand dismantlement due to protein degradation leads to BBB dysfunction, yet the mechanisms driving this process are poorly understood. Here, we show that endothelial-specific ablation of Rab7a, a small GTPase that regulates endolysosomal protein degradation, reduces stroke-induced TJ strand disassembly resulting in decreased paracellular BBB permeability and improved neuronal outcomes. Two pro-inflammatory cytokines, TNFα and IL1ß, but not glucose and oxygen deprivation, induce Rab7a activation via Ccz1 in brain ECs in vitro, leading to increased TJ protein degradation and impaired paracellular barrier function. Silencing Rab7a in brain ECs in vitro reduces cytokine-driven endothelial barrier dysfunction by suppressing degradation of a key BBB TJ protein, Claudin-5. Thus, Rab7a activation by inflammatory cytokines promotes degradation of select TJ proteins leading to BBB dysfunction after ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA