Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transgenic Res ; 31(4-5): 507-524, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35939227

RESUMO

Many protein families have numerous members listed in databases as allergens; however, some allergen database entries, herein called "orphan allergens", are members of large families of which all other members are not allergens. These orphan allergens provide an opportunity to assess whether specific structural features render a protein allergenic. Three orphan allergens [Cladosporium herbarum aldehyde dehydrogenase (ChALDH), Alternaria alternata ALDH (AaALDH), and C. herbarum mannitol dehydrogenase (ChMDH)] were recombinantly produced and purified for structure characterization and for clinical skin prick testing (SPT) in mold allergic participants. Examination of the X-ray crystal structures of ChALDH and ChMDH and a homology structure model of AaALDH did not identify any discernable epitopes that distinguish these putative orphan allergens from their non-allergenic protein relatives. SPT results were aligned with ChMDH being an allergen, 53% of the participants were SPT (+). AaALDH did not elicit SPT reactivity above control proteins not in allergen databases (i.e., Psedomonas syringae indole-3-acetaldehyde dehydrogenase and Zea mays ALDH). Although published results showed consequential human IgE reactivity with ChALDH, no SPT reactivity was observed in this study. With only one of these three orphan allergens, ChMDH, eliciting SPT(+) reactions consistent with the protein being included in allergen databases, this underscores the complicated nature of how bioinformatics is used to assess the potential allergenicity of food proteins that could be newly added to human diets and, when needed, the subsequent clinical testing of that bioinformatic assessment.Trial registration number and date of registration AAC-2017-0467, approved as WIRB protocol #20172536 on 07DEC2017 by WIRB-Copernicus (OHRP/FDA Registration #: IRB00000533, organization #: IORG0000432).


Assuntos
Alérgenos , Imunoglobulina E , Aldeído Desidrogenase , Alérgenos/genética , Epitopos , Humanos , Indóis , Manitol Desidrogenases
2.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457089

RESUMO

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes , Taxa de Mutação , Plantas Geneticamente Modificadas/genética
3.
Plant Cell Environ ; 43(4): 880-902, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31733168

RESUMO

A challenge to improve an integrative phenotype, like yield, is the interaction between the broad range of possible molecular and physiological traits that contribute to yield and the multitude of potential environmental conditions in which they are expressed. This study collected data on 31 phenotypic traits, 83 annotated metabolites, and nearly 22,000 transcripts from a set of 57 diverse, commercially relevant maize hybrids across three years in central U.S. Corn Belt environments. Although variability in characteristics created a complex picture of how traits interact produce yield, phenotypic traits and gene expression were more consistent across environments, while metabolite levels showed low repeatability. Phenology traits, such as green leaf number and grain moisture and whole plant nitrogen content showed the most consistent correlation with yield. A machine learning predictive analysis of phenotypic traits revealed that ear traits, phenology, and root traits were most important to predicting yield. Analysis suggested little correlation between biomass traits and yield, suggesting there is more of a sink limitation to yield under the conditions studied here. This work suggests that continued improvement of maize yields requires a strong understanding of baseline variation of plant characteristics across commercially-relevant germplasm to drive strategies for consistently improving yield.


Assuntos
Zea mays/genética , Biomassa , Produção Agrícola , Meio Ambiente , Regulação da Expressão Gênica de Plantas/genética , Estudos de Associação Genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
4.
Metabolomics ; 16(10): 111, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037482

RESUMO

BACKGROUND: The safety assessment of foods and feeds from genetically modified (GM) crops includes the comparison of key characteristics, such as crop composition, agronomic phenotype and observations from animal feeding studies compared to conventional counterpart varieties that have a history of safe consumption, often including a near isogenic variety. The comparative compositional analysis of GM crops has been based on targeted, validated, quantitative analytical methods for the key food and feed nutrients and antinutrients for each crop, as identified by Organization of Economic Co-operation and Development (OCED). As technologies for untargeted metabolomic methods have evolved, proposals have emerged for their use to complement or replace targeted compositional analytical methods in regulatory risk assessments of GM crops to increase the number of analyzed metabolites. AIM OF REVIEW: The technical opportunities, challenges and strategies of including untargeted metabolomics analysis in the comparative safety assessment of GM crops are reviewed. The results from metabolomics studies of GM and conventional crops published over the last eight years provide context to enable the discussion of whether metabolomics can materially improve the risk assessment of food and feed from GM crops beyond that possible by the Codex-defined practices used worldwide for more than 25 years. KEY SCIENTIFIC CONCEPTS OF REVIEW: Published studies to date show that environmental and genetic factors affect plant metabolomics profiles. In contrast, the plant biotechnology process used to make GM crops has little, if any consequence, unless the inserted GM trait is intended to alter food or feed composition. The nutritional value and safety of food and feed from GM crops is well informed by the quantitative, validated compositional methods for list of key analytes defined by crop-specific OECD consensus documents. Untargeted metabolic profiling has yet to provide data that better informs the safety assessment of GM crops than the already rigorous Codex-defined quantitative comparative assessment. Furthermore, technical challenges limit the implementation of untargeted metabolomics for regulatory purposes: no single extraction method or analytical technique captures the complete plant metabolome; a large percentage of metabolites features are unknown, requiring additional research to understand if differences for such unknowns affect food/feed safety; and standardized methods are needed to provide reproducible data over time and laboratories.


Assuntos
Inocuidade dos Alimentos/métodos , Metabolômica/métodos , Plantas Geneticamente Modificadas/metabolismo , Ração Animal/análise , Animais , Biotecnologia , Produtos Agrícolas/genética , Alimentos Geneticamente Modificados , Humanos , Metaboloma , Plantas Geneticamente Modificadas/genética , Medição de Risco/métodos
5.
Regul Toxicol Pharmacol ; 102: 98-107, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30562601

RESUMO

Assessing the safety of genetically engineered crops includes evaluating the risk (hazard and exposure) of consuming their newly expressed proteins. The dicamba monooxygenase (DMO) protein, introduced into soybeans to confer tolerance (DT) to dicamba herbicide, was previously characterized and identified to pose no food or feed safety hazards. Most agricultural commodities (e.g., soybeans, maize) enter the food supply after processing methods that can include exposure to high temperatures, harsh solvents or pH extremes that can adversely impact the structure and function of proteins. To understand the likelihood of exposure to DMO in foods from DT soy, enzymatically active and/or immunodetectable forms of DMO were measured in pilot-scale productions of two soy foods (soymilk and tofu), and eight processed fractions (full fat flour, inactivated full fat flour, defatted flour, toasted meal, protein isolate, protein concentrate, crude lecithin, and refined, bleached and deodorized oil). Western blot analysis detected DMO in tofu and in five of the eight processed fractions. DMO activity was not detected in either soymilk or tofu, nor in six of the eight processed fractions. Therefore, many commercial soy processing methods can denature and/or degrade introduced proteins, like DMO. Although the DMO protein has shown no evidence of hazard, this study demonstrates that processing further reduces any food or feed risk by limiting dietary exposure to intact DMO protein.


Assuntos
Dicamba , Manipulação de Alimentos , Glycine max , Herbicidas , Oxigenases de Função Mista , Plantas Geneticamente Modificadas/enzimologia , Alimentos de Soja/análise , Exposição Dietética/prevenção & controle , Resistência a Medicamentos , Oxigenases de Função Mista/análise , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Glycine max/enzimologia , Glycine max/genética
6.
Transgenic Res ; 27(6): 511-524, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173346

RESUMO

The expression of the CP4 EPSPS protein in genetically engineered (GE) soybean confers tolerance to the Roundup® family of agricultural herbicides. This study evaluated the variability of CP4 EPSPS expression using an enzyme-linked immunosorbent assay in soybean tissues collected across diverse germplasm and 74 different environments in Argentina, Brazil and the USA. Evaluated material included single and combined (stacked) trait products with other GE traits in entries with cp4 epsps gene at one or two loci. The highest level of CP4 EPSPS was observed in leaf tissues, intermediate in forage and seed, and lowest in root tissues. Varieties with two loci had approximately twice the level of CP4 EPSPS expression compared to one locus entries. Variable and non-directional level of CP4 EPSPS was observed with other factors like genetic background, trait stacking, growing region or season. The maximum and average CP4 EPSPS expression levels in seed provided large margins of exposure (MOE of approximately 4000 and 11,000, respectively), mitigating concerns over exposure to this protein in food and feed from soybean varieties tolerant to Roundup® herbicides.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Agrobacterium/enzimologia , Tolerância a Medicamentos , Glycine max/enzimologia , Plantas Geneticamente Modificadas/enzimologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Glycine max/classificação , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glifosato
7.
Regul Toxicol Pharmacol ; 99: 50-60, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30196079

RESUMO

The lepidopteran-active Cry1A.105 protein is a chimeric three-domain insecticidal toxin with distinct structural domains derived from the naturally occurring Cry1Ab, Cry1Ac and Cry1F proteins from the soil bacterium Bacillus thuringiensis (Bt). The X-ray crystal structure of the Cry1A.105 tryptic core at 3.0 Šresolution demonstrates its high structural similarity to the tryptic core of Cry1Ac. Bioinformatics analyses demonstrate that Cry1A.105 has no significant amino acid sequence similarity to known allergens or mammalian toxins, which is the same conclusion reached for its component domains. Like its intact donor proteins, Cry1A.105 was heat labile at temperatures ≥75 °C and degraded upon exposure to gastrointestinal proteases. No adverse effects were observed in mice when Cry1A.105 was dosed orally at 2451 mg/kg body weight. Therefore, the weight of evidence supports that Cry1A.105 is safe for human and animal consumption. These results support the conclusion that the safety of a chimeric protein for human or animal consumption can be evaluated in the context of the safety of its donor proteins.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/efeitos adversos , Sequência de Aminoácidos , Animais , Endotoxinas/efeitos adversos , Feminino , Humanos , Inseticidas/efeitos adversos , Camundongos , Proteínas Recombinantes de Fusão/efeitos adversos
8.
J Neurosci ; 36(40): 10245-10256, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27707963

RESUMO

Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. SIGNIFICANCE STATEMENT: Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment.


Assuntos
Distonia/genética , Distonia/fisiopatologia , Retículo Endoplasmático/genética , Chaperonas Moleculares/genética , Animais , Comportamento Animal , Sinalização do Cálcio/genética , Cerebelo/fisiopatologia , Distonia/psicologia , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Genótipo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Transdução de Sinais/genética
9.
J Invertebr Pathol ; 142: 50-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235983

RESUMO

The need for sustainable insect pest control is driving the investigation and discovery of insecticidal proteins outside of the typical 3-domain Cry protein family from Bacillus thuringiensis (Bt). Examples include Cry35 and Cry51 that belong to protein families (Toxin_10, ETX_MTX2) sharing a common ß-pore forming structure and function with known mammalian toxins such as epsilon toxin (ETX). Although ß-pore forming proteins are related to mammalian toxins, there are key differences in sequence and structure that lead to organism specificity that is useful in the weight-of-evidence approach for safety assessment. Despite low overall amino acid sequence identity among ETX_MTX2 proteins, sequence and structural similarities are found in the tail region responsible for the shared oligomerization and pore formation functions (causing the "relatedness"). Conversely, most of the sequence and structural diversity is located in the head region that is likely responsible for differential receptor binding and target species specificity (e.g., insecticidal vs. mammalian). Therefore, inclusion of a domain-based protein characterization approach that includes bioinformatic and functional comparisons of conserved and diverse domains will enhance the overall weight of evidence safety assessment of proteins including recently reported Cry51 protein variants (Cry51Aa1, Cry51Aa2, and Cry51Aa2.834_16).


Assuntos
Biologia Computacional/métodos , Endotoxinas/classificação , Inseticidas/classificação , Modelos Moleculares , Controle Biológico de Vetores/métodos , Sequência de Aminoácidos , Animais , Endotoxinas/química , Endotoxinas/genética , Inseticidas/química , Inseticidas/metabolismo , Relação Estrutura-Atividade
10.
Regul Toxicol Pharmacol ; 81: 171-182, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27575686

RESUMO

Dicamba tolerant (DT) soybean, cotton and maize were developed through constitutive expression of dicamba mono-oxygenase (DMO) in chloroplasts. DMO expressed in three DT crops exhibit 91.6-97.1% amino acid sequence identity to wild type DMO. All DMO forms maintain the characteristics of Rieske oxygenases that have a history of safe use. Additionally, they are all functionally similar in vivo since the three DT crops are all tolerant to dicamba treatment. None of these DMO sequences were found to have similarity to any known allergens or toxins. Herein, to further understand the safety of these DMO variants, a weight of evidence approach was employed. Each purified DMO protein was found to be completely deactivated in vitro by heating at temperatures 55 °C and above, and all were completely digested within 30 s or 5 min by pepsin and pancreatin, respectively. Mice orally dosed with each of these DMO proteins showed no adverse effects as evidenced by analysis of body weight gain, food consumption and clinical observations. Therefore, the weight of evidence from all these protein safety studies support the conclusion that the various forms of DMO proteins introduced into DT soybean, cotton and maize are safe for food and feed consumption, and the small amino acid sequence differences outside the active site of DMO do not raise any additional safety concerns.


Assuntos
Produtos Agrícolas/toxicidade , Dicamba/farmacologia , Resistência a Medicamentos , Alimentos Geneticamente Modificados/toxicidade , Glycine max/toxicidade , Gossypium/toxicidade , Herbicidas/farmacologia , Oxigenases de Função Mista/toxicidade , Oxirredutases O-Desmetilantes/toxicidade , Plantas Geneticamente Modificadas/toxicidade , Zea mays/toxicidade , Administração Oral , Sequência de Aminoácidos , Animais , Biologia Computacional , Qualidade de Produtos para o Consumidor , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Bases de Dados de Proteínas , Resistência a Medicamentos/genética , Estabilidade Enzimática , Feminino , Inocuidade dos Alimentos , Alimentos Geneticamente Modificados/parasitologia , Regulação da Expressão Gênica de Plantas , Gossypium/enzimologia , Gossypium/genética , Humanos , Masculino , Camundongos , Oxigenases de Função Mista/administração & dosagem , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Pancreatina/metabolismo , Pepsina A/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Desnaturação Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Medição de Risco , Glycine max/enzimologia , Glycine max/genética , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/genética , Temperatura , Testes de Toxicidade Aguda , Zea mays/enzimologia , Zea mays/genética
11.
Regul Toxicol Pharmacol ; 79: 149-155, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27105772

RESUMO

Genetically modified (GM) crops have achieved success in the marketplace and their benefits extend beyond the overall increase in harvest yields to include lowered use of insecticides and decreased carbon dioxide emissions. The most widely grown GM crops contain gene/s for targeted insect protection, herbicide tolerance, or both. Plant expression of Bacillus thuringiensis (Bt) crystal (Cry) insecticidal proteins have been the primary way to impart insect resistance in GM crops. Although deemed safe by regulatory agencies globally, previous studies have been the basis for discussions around the potential immuno-adjuvant effects of Cry proteins. These studies had limitations in study design. The studies used animal models with extremely high doses of Cry proteins, which when given using the ig route were co-administered with an adjuvant. Although the presumption exists that Cry proteins may have immunostimulatory activity and therefore an adjuvanticity risk, the evidence shows that Cry proteins are expressed at very low levels in GM crops and are unlikely to function as adjuvants. This conclusion is based on critical review of the published literature on the effects of immunomodulation by Cry proteins, the history of safe use of Cry proteins in foods, safety of the Bt donor organisms, and pre-market weight-of-evidence-based safety assessments for GM crops.


Assuntos
Proteínas de Bactérias/genética , Qualidade de Produtos para o Consumidor , Produtos Agrícolas/genética , Endotoxinas/genética , Inocuidade dos Alimentos , Proteínas Hemolisinas/genética , Insetos/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/imunologia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/parasitologia , Endotoxinas/imunologia , Endotoxinas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Parasita , Humanos , Insetos/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Medição de Risco
12.
Transgenic Res ; 24(4): 587-603, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25716164

RESUMO

In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled "Genetic Basis of Unintended Effects in Modified Plants" was held in Ottawa, Canada, bringing together over 75 scientists from academia, government, and the agro-biotech industry. The objectives of the meeting were to explore current knowledge and identify areas requiring further study on unintended effects in plants and to discuss how this information can inform and improve genetically modified (GM) crop risk assessments. The meeting featured presentations on the molecular basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops. The development and role of emerging "omics" technologies in the assessment of unintended effects was also discussed. Several themes recurred in a number of talks; for example, a common observation was that no system for genetic modification, including conventional methods of plant breeding, is without unintended effects. Another common observation was that "unintended" does not necessarily mean "harmful". This paper summarizes key points from the information presented at the meeting to provide readers with current viewpoints on these topics.


Assuntos
Produtos Agrícolas/genética , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas/genética , Qualidade de Produtos para o Consumidor , Humanos , Medição de Risco
13.
Biochem Biophys Res Commun ; 418(1): 44-8, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22227190

RESUMO

A significant fraction of all proteins are misfolded and must be degraded. The ubiquitin-proteasome pathway provides an essential protein quality control function necessary for normal cellular homeostasis. Substrate specificity is mediated by proteins called ubiquitin ligases. In the endoplasmic reticulum (ER) a specialized pathway, the endoplasmic reticulum associated degradation (ERAD) pathway provides means to eliminate misfolded proteins from the ER. One marker used by the ER to identify misfolded glycoproteins is the presence of a high-mannose (Man5-8GlcNAc2) glycan. Recently, FBXO2 was shown to bind high mannose glycans and participate in ERAD. Using glycan arrays, immobilized glycoprotein pulldowns, and glycan competition assays we demonstrate that FBXO2 preferentially binds unfolded glycoproteins. Using recombinant, bacterially expressed GST-FBXO2 as an unfolded protein sensor we demonstrate it can be used to monitor increases in misfolded glycoproteins after physiological or pharmaceutical stressors.


Assuntos
Técnicas Biossensoriais , Proteínas de Ciclo Celular/química , Retículo Endoplasmático/metabolismo , Proteínas F-Box/química , Glicoproteínas/química , Proteínas do Tecido Nervoso/química , Desdobramento de Proteína , Ubiquitina-Proteína Ligases/química , Animais , Células COS , Chlorocebus aethiops , Camundongos , Oligossacarídeos/química , Polissacarídeos/química , Proteólise , Proteínas Recombinantes de Fusão/química , Estresse Fisiológico
15.
J Telemed Telecare ; : 1357633X221086067, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275502

RESUMO

INTRODUCTION: Telemedicine serves as a viable option during the COVID-19 pandemic to provide in-home care, maintain home isolation precautions, reduce unnecessary healthcare exposures, and de-burden hospitals. METHODS: We created a novel telemedicine program to closely monitor patients infected with SARS-CoV-2 (COVID-19) at home. Adult patients with COVID-19 were enrolled in the program at the time of documented infection. Patients were followed by a team of providers via telephone or video visits at frequent intervals until resolution of their acute illness. Additionally, patients were stratified into high-risk and low-risk categories based on demographics and underlying comorbidities. The primary outcome was hospitalization after enrollment in the home monitoring program, including 30 days after discharge from the program. RESULTS: Over a 3.5-month period, 1128 patients met criteria for enrollment in the home monitoring program. 30.7% were risk stratified as high risk for poor outcomes based on their comorbidities and age. Of the 1128 patients, 6.2% required hospitalization and 1.2% required ICU admission during the outcome period. Hospitalization was more frequent in patients identified as high risk (14.2% vs 2.7%, P < 0.001). DISCUSSION: Enrollment in a home monitoring program appears to be an effective and sustainable modality for the ambulatory management of COVID-19.

16.
Neurochem Res ; 36(3): 452-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21161590

RESUMO

DYT1 dystonia is caused by a glutamic acid deletion (ΔE) in the endoplasmic reticulum (ER) protein torsinA. Previous studies suggest that torsinA modulates the aggregation of cytosolic misfolded proteins and ER stress responses, although the mechanisms underlying those effects remain unclear. In order to investigate the bases of these observations, we analyzed the interaction between torsinA expression, protein aggregation and ER stress in PC6.3 cells. Unexpectedly, we found that expression of torsinA(wt) or (ΔE) does not influence the inclusion formation by an expanded polyglutamine reporter protein in this cellular model. Furthermore, torsinA does not prevent the activation of ER stress induced by thapsigargin or the reducing agent DTT. Interestingly, DTT induces post-translational changes in torsinA, more prominently for torsinA(wt) than (ΔE). This work highlights the importance of model system selection for the study of torsinA function. Furthermore, it provides additional evidence suggesting that torsinA is sensitive to changes in the cellular redox potential.


Assuntos
Chaperonas Moleculares/metabolismo , Animais , Linhagem Celular , Distonia Muscular Deformante , Retículo Endoplasmático/metabolismo , Humanos , Chaperonas Moleculares/genética , Mutação , Peptídeos/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Estresse Fisiológico
17.
J Hosp Med ; 16(10): 583-588, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424188

RESUMO

BACKGROUND/OBJECTIVE: Hospital readmissions in the United States, especially in patients at high-risk, cost more than $17 billion annually. Although care transitions is an important area of research, data are limited regarding its efficacy, especially among rural patients. In this study, we describe a novel transitions-of-care clinic (TOCC) to reduce 30-day readmissions in a Veterans Health Administration setting that serves a high proportion of rural veterans. METHODS: In this quality improvement initiative we conducted a pre-post study evaluating clinical outcomes in adult patients at high risk for 30-day readmission (Care Assessment Needs score > 85) discharged from the Iowa City Veterans Affairs (ICVA) Health Care System from 2017 to 2020. The ICVA serves 184,000 veterans across 50 counties in eastern Iowa, western Illinois, and northern Missouri, with more than 60% of these patients residing in rural areas. We implemented a multidisciplinary TOCC to provide in-person or virtual follow-up to high-risk veterans after hospital discharge. The main purpose of this study was to assess how TOCC follow-up impacted the monthly 30-day patient readmission rate. RESULTS: The TOCC resulted in a 19.2% relative reduction in 30-day readmission rates in the 12-month postimplementation period compared to the preimplementation period (9.2% vs 11.4%, P = .04). Virtual visits were more popular than in-person visits among both urban and rural veterans. There was no difference in outcomes between these two follow-up options, and both groups had reduced readmission rates compared to non-TOCC follow-up. CONCLUSIONS: A multidisciplinary TOCC within the ICVA featuring both virtual and in-person visits reduced the 30-day readmission rate. This reduction was particularly notable among patients with congestive heart failure.


Assuntos
Readmissão do Paciente , Veteranos , Hospitais de Veteranos , Humanos , Alta do Paciente , População Rural , Estados Unidos
18.
Regul Toxicol Pharmacol ; 58(3 Suppl): S13-20, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20832442

RESUMO

The number of evaluations of the nutrient composition of food and feed crops has increased over the past 15years due to the introduction of new crops using the tools of modern biotechnology. The composition of these crops has been extensively compared with conventional (non-transgenic) controls as an integral part of the comparative safety assessment process. Following guidelines outlined in the Organization of Economic Co-operation and Development (OECD) Consensus Documents, most of these studies have incorporated field trials at multiple geographies and a diverse range of commercially available varieties/hybrids that are analyzed to understand natural variability in composition due to genetic and environmental influences. Using studies conducted in the US, Argentina and Brazil over multiple growing seasons, this report documents the effect of geography, growing season, and genetic background on soybean composition where fatty acids and isoflavones were shown to be particularly variable. A separate investigation of 96 different maize hybrids grown at three locations in the US demonstrated that levels of free amino acids, sugars/polyols, and molecules associated with stress response can vary to a greater degree than that observed for more abundant components. The International Life Sciences Institute (ILSI) crop composition database has proven to be an important resource for collecting and disseminating nutrient composition data to promote a further understanding of the variability that occurs naturally in crops used for food and feed.


Assuntos
Ração Animal/análise , Produtos Agrícolas/química , Análise de Alimentos/métodos , Animais , Biotecnologia/métodos , Produtos Agrícolas/genética , Bases de Dados Factuais , Guias como Assunto , Humanos , Valor Nutritivo , Glycine max/química , Glycine max/genética , Zea mays/química , Zea mays/genética
19.
J Neurosci ; 27(19): 5163-71, 2007 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-17494702

RESUMO

Little is known about the role of protein quality control in the inner ear. We now report selective cochlear degeneration in mice deficient in Fbx2, a ubiquitin ligase F-box protein with specificity for high-mannose glycoproteins (Yoshida et al., 2002). Originally described as a brain-enriched protein (Erhardt et al., 1998), Fbx2 is also highly expressed in the organ of Corti, in which it has been called organ of Corti protein 1 (Thalmann et al., 1997). Mice with targeted deletion of Fbxo2 develop age-related hearing loss beginning at 2 months. Cellular degeneration begins in the epithelial support cells of the organ of Corti and is accompanied by changes in cellular membrane integrity and early increases in connexin 26, a cochlear gap junction protein previously shown to interact with Fbx2 (Henzl et al., 2004). Progressive degeneration includes hair cells and the spiral ganglion, but the brain itself is spared despite widespread CNS expression of Fbx2. Cochlear Fbx2 binds Skp1, the common binding partner for F-box proteins, and is an unusually abundant inner ear protein. Whereas cochlear Skp1 levels fall in parallel with the loss of Fbx2, other components of the canonical SCF (Skp1, Cullin1, F-box, Rbx1) ubiquitin ligase complex remain unchanged and show little if any complex formation with Fbx2/Skp1, suggesting that cochlear Fbx2 and Skp1 form a novel, heterodimeric complex. Our findings demonstrate that components of protein quality control are essential for inner ear homeostasis and implicate Fbx2 and Skp1 as potential genetic modifiers in age-related hearing loss.


Assuntos
Doenças Cocleares/metabolismo , Surdez/metabolismo , Proteínas F-Box/genética , Células Ciliadas Auditivas/metabolismo , Degeneração Neural/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Doenças Cocleares/genética , Doenças Cocleares/fisiopatologia , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Surdez/genética , Surdez/fisiopatologia , Glicoproteínas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/fisiopatologia , Células Labirínticas de Suporte/metabolismo , Células Labirínticas de Suporte/patologia , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Ligação Proteica/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
20.
Arch Biochem Biophys ; 480(2): 111-21, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18930704

RESUMO

The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.


Assuntos
Corynebacterium glutamicum/enzimologia , Hidroliases/química , Lisina/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X/métodos , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Humanos , Concentração Inibidora 50 , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA