Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
2.
Med Phys ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843532

RESUMO

BACKGROUND: MRI-guided radiation therapy (MRgRT) requires unique quality assurance equipment to address MR-compatibility needs, minimize electron return effect, handle complex dose distributions, and evaluate real-time dosimetry for gating. Plastic scintillation detectors (PSDs) are an attractive option to address these needs. PURPOSE: To perform a comprehensive characterization of a multi-probe PSD system in a low-field 0.35 T MR-linac, including detector response assessment and gating performance. METHODS: A four-channel PSD system (HYPERSCINT RP-200) was assembled. A single channel was used to evaluate repeatability, percent depth dose (PDD), detector response as a function of orientation with respect to the magnetic field, and intersession variability. All four channels were used to evaluate repeatability, linearity, and output factors. The four PSDs were integrated into an MR-compatible motion phantom at isocenter and in gradient regions. Experiments were conducted to evaluate gating performance and tracking efficacy. RESULTS: For repeatability, the maximum standard deviation of repeated measurements was 0.13% (single PSD). Comparing the PSD to reference data, PDD had a maximum difference of 1.12% (10 cm depth, 6.64 × 6.64 cm2). Percent differences for rotated detector setups were negligible (< 0.3%). All four PSDs demonstrated linear response over 10-1000 MU delivered and the maximum percent difference between the baseline and measured output factors was 0.78% (2.49 × 2.49 cm2). Gating experiments had 400 cGy delivered to isocenter with < 0.8 cGy variation for central axis measures and < 0.7 cGy for the gradient sampled region. Real-time dosimetry measurements captured spurious beam-on incidents that correlated to tracking algorithm inaccuracies and highlighted gating parameter impact on delivery efficiency. CONCLUSIONS: Characterization of the multi-point PSD dosimetry system in a 0.35 T MR-linac demonstrated reliability in a low-field MR-Linac setting, with high repeatability, linearity, small intersession variability, and similarity to baseline data for PDD and output factors. Time-resolved, multi-point dosimetry also showed considerable promise for gated MR-Linac applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38797498

RESUMO

PURPOSE: Cardiac substructure dose metrics are more strongly linked to late cardiac morbidities than to whole-heart metrics. Magnetic resonance (MR)-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning framework, "No New" U-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. METHODS AND MATERIALS: Eighteen (institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linear accelerator were retrospectively evaluated. On each image, 1 of 2 radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n = 10), validate (n = 3), and test (n = 5) nnU-Net.wSD by leveraging a teacher-student network and comparing it to standard 3-dimensional U-Net. The impact of using simulation data or including 3 to 4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient, mean distance to agreement, and 95% Hausdorff distance), visual inspection, and clinical dose-volume histograms were evaluated. To determine generalizability, institute A's model was tested on an unlabeled data set from institute B (n = 22) and evaluated via consensus scoring and volume comparisons. RESULTS: nnU-Net.wSD yielded a Dice similarity coefficient (reported mean ± SD) of 0.65 ± 0.25 across the 12 substructures (chambers, 0.85 ± 0.05; great vessels, 0.67 ± 0.19; and coronary arteries, 0.33 ± 0.16; mean distance to agreement, <3 mm; mean 95% Hausdorff distance, <9 mm) while outperforming the 3-dimensional U-Net (0.583 ± 0.28; P <.01). Leveraging fractionated data for augmentation improved over a single MR simulation time point (0.579 ± 0.29; P <.01). Predicted contours yielded dose-volume histograms that closely matched those of the clinical treatment plans where mean and maximum (ie, dose to 0.03 cc) doses deviated by 0.32 ± 0.5 Gy and 1.42 ± 2.6 Gy, respectively. There were no statistically significant differences between institute A and B volumes (P >.05) for 11 of 12 substructures, with larger volumes requiring minor changes and coronary arteries exhibiting more variability. CONCLUSIONS: This work is a critical step toward rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.

4.
Med Phys ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042362

RESUMO

BACKGROUND: Cardiac applications in radiation therapy are rapidly expanding including magnetic resonance guided radiation therapy (MRgRT) for real-time gating for targeting and avoidance near the heart or treating ventricular tachycardia (VT). PURPOSE: This work describes the development and implementation of a novel multi-modality and magnetic resonance (MR)-compatible cardiac phantom. METHODS: The patient-informed 3D model was derived from manual contouring of a contrast-enhanced Coronary Computed Tomography Angiography scan, exported as a Stereolithography model, then post-processed to simulate female heart with an average volume. The model was 3D-printed using Elastic50A to provide MR contrast to water background. Two rigid acrylic modules containing cardiac structures were designed and assembled, retrofitting to an MR-safe programmable motor to supply cardiac and respiratory motion in superior-inferior directions. One module contained a cavity for an ion chamber (IC), and the other was equipped with multiple interchangeable cavities for plastic scintillation detectors (PSDs). Images were acquired on a 0.35 T MR-linac for validation of phantom geometry, motion, and simulated online treatment planning and delivery. Three motion profiles were prescribed: patient-derived cardiac (sine waveform, 4.3 mm peak-to-peak, 60 beats/min), respiratory (cos4 waveform, 30 mm peak-to-peak, 12 breaths/min), and a superposition of cardiac (sine waveform, 4 mm peak-to-peak, 70 beats/min) and respiratory (cos4 waveform, 24 mm peak-to-peak, 12 breaths/min). The amplitude of the motion profiles was evaluated from sagittal cine images at eight frames/s with a resolution of 2.4 mm × 2.4 mm. Gated dosimetry experiments were performed using the two module configurations for calculating dose relative to stationary. A CT-based VT treatment plan was delivered twice under cone-beam CT guidance and cumulative stationary doses to multi-point PSDs were evaluated. RESULTS: No artifacts were observed on any images acquired during phantom operation. Phantom excursions measured 49.3 ± 25.8%/66.9 ± 14.0%, 97.0 ± 2.2%/96.4 ± 1.7%, and 90.4 ± 4.8%/89.3 ± 3.5% of prescription for cardiac, respiratory, and cardio-respiratory motion profiles for the 2-chamber (PSD) and 12-substructure (IC) phantom modules respectively. In the gated experiments, the cumulative dose was <2% from expected using the IC module. Real-time dose measured for the PSDs at 10 Hz acquisition rate demonstrated the ability to detect the dosimetric consequences of cardiac, respiratory, and cardio-respiratory motion when sampling of different locations during a single delivery, and the stability of our phantom dosimetric results over repeated cycles for the high dose and high gradient regions. For the VT delivery, high dose PSD was <1% from expected (5-6 cGy deviation of 5.9 Gy/fraction) and high gradient/low dose regions had deviations <3.6% (6.3 cGy less than expected 1.73 Gy/fraction). CONCLUSIONS: A novel multi-modality modular heart phantom was designed, constructed, and used for gated radiotherapy experiments on a 0.35 T MR-linac. Our phantom was capable of mimicking cardiac, cardio-respiratory, and respiratory motion while performing dosimetric evaluations of gated procedures using IC and PSD configurations. Time-resolved PSDs with small sensitive volumes appear promising for low-amplitude/high-frequency motion and multi-point data acquisition for advanced dosimetric capabilities. Illustrating VT planning and delivery further expands our phantom to address the unmet needs of cardiac applications in radiotherapy.

5.
Med Phys ; 51(6): 3822-3849, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648857

RESUMO

Use of magnetic resonance (MR) imaging in radiation therapy has increased substantially in recent years as more radiotherapy centers are having MR simulators installed, requesting more time on clinical diagnostic MR systems, or even treating with combination MR linear accelerator (MR-linac) systems. With this increased use, to ensure the most accurate integration of images into radiotherapy (RT), RT immobilization devices and accessories must be able to be used safely in the MR environment and produce minimal perturbations. The determination of the safety profile and considerations often falls to the medical physicist or other support staff members who at a minimum should be a Level 2 personnel as per the ACR. The purpose of this guidance document will be to help guide the user in making determinations on MR Safety labeling (i.e., MR Safe, Conditional, or Unsafe) including standard testing, and verification of image quality, when using RT immobilization devices and accessories in an MR environment.


Assuntos
Imobilização , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Humanos , Imobilização/instrumentação , Radioterapia Guiada por Imagem/instrumentação
6.
Radiother Oncol ; 191: 110064, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135187

RESUMO

BACKGROUND AND PURPOSE: Radiation dose escalation may improve local control (LC) and overall survival (OS) in select pancreatic ductal adenocarcinoma (PDAC) patients. We prospectively evaluated the safety and efficacy of ablative stereotactic magnetic resonance (MR)-guided adaptive radiation therapy (SMART) for borderline resectable (BRPC) and locally advanced pancreas cancer (LAPC). The primary endpoint of acute grade ≥ 3 gastrointestinal (GI) toxicity definitely related to SMART was previously published with median follow-up (FU) 8.8 months from SMART. We now present more mature outcomes including OS and late toxicity. MATERIALS AND METHODS: This prospective, multi-center, single-arm open-label phase 2 trial (NCT03621644) enrolled 136 patients (LAPC 56.6 %; BRPC 43.4 %) after ≥ 3 months of any chemotherapy without distant progression and CA19-9 ≤ 500 U/mL. SMART was delivered on a 0.35 T MR-guided system prescribed to 50 Gy in 5 fractions (biologically effective dose10 [BED10] = 100 Gy). Elective coverage was optional. Surgery and chemotherapy were permitted after SMART. RESULTS: Mean age was 65.7 years (range, 36-85), induction FOLFIRINOX was common (81.7 %), most received elective coverage (57.4 %), and 34.6 % had surgery after SMART. Median FU was 22.9 months from diagnosis and 14.2 months from SMART, respectively. 2-year OS from diagnosis and SMART were 53.6 % and 40.5 %, respectively. Late grade ≥ 3 toxicity definitely, probably, or possibly attributed to SMART were observed in 0 %, 4.6 %, and 11.5 % patients, respectively. CONCLUSIONS: Long-term outcomes from the phase 2 SMART trial demonstrate encouraging OS and limited severe toxicity. Additional prospective evaluation of this novel strategy is warranted.


Assuntos
Neoplasias Pancreáticas , Radiocirurgia , Humanos , Idoso , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Radiocirurgia/efeitos adversos
7.
Am Heart J Plus ; 38: 100354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510746

RESUMO

As cancer therapies increase in effectiveness and patients' life expectancies improve, balancing oncologic efficacy while reducing acute and long-term cardiovascular toxicities has become of paramount importance. To address this pressing need, the Cardiology Oncology Innovation Network (COIN) was formed to bring together domain experts with the overarching goal of collaboratively investigating, applying, and educating widely on various forms of innovation to improve the quality of life and cardiovascular healthcare of patients undergoing and surviving cancer therapies. The COIN mission pillars of innovation, collaboration, and education have been implemented with cross-collaboration among academic institutions, private and public establishments, and industry and technology companies. In this report, we summarize proceedings from the first two annual COIN summits (inaugural in 2020 and subsequent in 2021) including educational sessions on technological innovations for establishing best practices and aligning resources. Herein, we highlight emerging areas for innovation and defining unmet needs to further improve the outcome for cancer patients and survivors of all ages. Additionally, we provide actionable suggestions for advancing innovation, collaboration, and education in cardio-oncology in the digital era.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38169907

RESUMO

In this paper, we proposed MAGNET, a novel modality-agnostic network for 3D medical image segmentation. Different from existing learning methods, MAGNET is specifically designed to handle real medical situations where multiple modalities/sequences are available during model training, but fewer ones are available or used at time of clinical practice. Our results on multiple datasets show that MAGNET trained on multi-modality data has the unique ability to perform predictions using any subset of training imaging modalities. It outperforms individually trained uni-modality models while can further boost performance when more modalities are available at testing.

9.
Cureus ; 15(12): e50459, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38222202

RESUMO

For MR-guided radiation therapy treatment planning, an MRI and CT of the intended treatment site are typically acquired. Patients' prior treatments or procedures can cause image artifacts in one or both scans, which may impact treatment planning or the radiation dose calculation. In this case report, a patient with several previous transcatheter arterial chemoembolization (TACE) procedures was planned for radiation therapy on a low-field MR-linac, and the impact of residual iodinated oil on the radiation dose calculation and MR-guided adaptive workflow was evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA