Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(1): 59-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300664

RESUMO

PURPOSE: The annual quality assurance (QA) of Leksell Gamma Knife® (LGK) systems are typically performed using films. Film is a good candidate for small field dosimetry due to its high spatial resolution and availability. However, there are multiple challenges with using film; film does not provide real-time measurement and requires batch-specific calibration. Our findings show that active detector-based QA can simplify the procedure and save time without loss of accuracy. METHODS: Annual QA tests for a LGK Icon™ system were performed using both film-based and filmless techniques. Output calibration, relative output factors (ROF), radiation profiles, sector uniformity/source counting, and verification of the unit center point (UCP) and radiation focal point (RFP) coincidence tests were performed. Radiochromic films, two ionization chambers, and a synthetic diamond detector were used for the measurements. Results were compared and verified with the treatment planning system (TPS). RESULTS: The measured dose rate of the LGK Icon was within 0.4% of the TPS value set at the time of commissioning using an ionization chamber. ROF for the 8 and 4-mm collimators were found to be 0.3% and 1.8% different from TPS values using the MicroDiamond detector and 2.6% and 1.9% different for film, respectively. Excellent agreement was found between TPS and measured dose profiles using the MicroDiamond detector which was within 1%/1 mm vs 2%/1 mm for film. Sector uniformity was found to be within 1% for all eight sectors measured using an ionization chamber. Verification of UCP and RFP coincidence using the MicroDiamond detector and pinprick film test was within 0.3 mm at isocenter for both. CONCLUSION: The annual QA of a LGK Icon was successfully performed by employing filmless techniques. Comparable results were obtained using radiochromic films. Utilizing active detectors instead of films simplifies the QA process and saves time without loss of accuracy.


Assuntos
Radiocirurgia , Calibragem , Diamante , Dosimetria Fotográfica , Humanos , Radiometria
2.
Circulation ; 139(3): 313-321, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586734

RESUMO

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS: We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.


Assuntos
Potenciais de Ação , Técnicas Eletrofisiológicas Cardíacas , Ventrículos do Coração/efeitos da radiação , Ablação por Radiofrequência/métodos , Radiocirurgia/métodos , Taquicardia Ventricular/radioterapia , Complexos Ventriculares Prematuros/radioterapia , Idoso , Idoso de 80 Anos ou mais , Antiarrítmicos/uso terapêutico , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Missouri , Valor Preditivo dos Testes , Estudos Prospectivos , Qualidade de Vida , Ablação por Radiofrequência/efeitos adversos , Radiocirurgia/efeitos adversos , Recidiva , Fatores de Risco , Inquéritos e Questionários , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/fisiopatologia
3.
J Appl Clin Med Phys ; 21(1): 95-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31943756

RESUMO

Current available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.0.3) and a secondary dose calculation was conducted. The agreement between the new calculations and the TPS were recorded and compared to the original secondary dose calculation agreement with the TPS using a Wilcoxon Signed Rank Test. Further comparisons using a Mann-Whitney test were made for targets treated at a 90° gamma angle against those treated with either a 70 or 110 gamma angle for both the new and commercial secondary dose calculation systems. Correlations between dose deviations from the treatment planning system against average target depth were evaluated using a Kendall's Tau correlation test for both programs. The Wilcoxon Signed Rank Test indicated a significant difference in the agreement between the two secondary calculations and the TPS, with a P-value < 0.0001. With respect to patients treated at nonstandard gamma angles, the new software was largely independent of patient setup, while the commercial software showed a significant dependence (P-value < 0.0001). The new secondary dose calculation software showed a moderate correlation with calculation depth, while the commercial software showed a weak correlation (Tau = -.322 and Tau = -.217 respectively). Overall, the new secondary software has better agreement with the TPS than the commercially available secondary calculation software over a range of diverse treatment geometries.


Assuntos
Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Cranianas/cirurgia , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias Cranianas/diagnóstico por imagem , Neoplasias Cranianas/patologia , Tomografia Computadorizada por Raios X/métodos
4.
J Appl Clin Med Phys ; 20(5): 21-26, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31055877

RESUMO

PURPOSE: Characterize the intra-fraction motion management (IFMM) system found on the Gamma Knife Icon (GKI), including spatial accuracy, latency, temporal performance, and overall effect on delivered dose. METHODS: A phantom was constructed, consisting of a three-axis translation mount, a remote motorized flipper, and a thermoplastic sphere surrounding a radiation detector. An infrared marker was placed on the translation mount secured to the flipper. The spatial accuracy of the IFMM was measured via the translation mount in all Cartesian planes. The detector was centered at the radiation focal point. A remote signal was used to move the marker out of the IFMM tolerance and pause the beam. A two-channel electrometer was used to record the signals from the detector and the flipper when motion was signaled. These signals determined the latency and temporal performance of the GKI. RESULTS: The spatial accuracy of the IFMM was found to be <0.1 mm. The measured latency was <200 ms. The dose difference with five interruptions was <0.5%. CONCLUSION: This work provides a quantitative characterization of the GKI IFMM system as required by the Nuclear Regulatory Commission. This provides a methodology for GKI users to satisfy these requirements using common laboratory equipment in lieu of a commercial solution.


Assuntos
Movimento , Neoplasias/cirurgia , Imagens de Fantasmas , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Desenho de Equipamento , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
5.
J Appl Clin Med Phys ; 19(1): 73-85, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29125224

RESUMO

Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID-based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two-dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response normalization utilizing an alternative beam and dark-field (ABDF) image acquisition technique and large overlapping field irradiations. The automated image acquisition was performed by XML-controlled machine operation and the PSM was generated based on a recursive calculation algorithm for Varian linacs equipped with aS1000 and aS1200 imager panels. Cross-comparisons of normalized beam profiles and 1.5%/1.5 mm 1D Gamma analysis was adopted to quantify the improvement of beam profile matching before and after PSM corrections. PSMs were derived for both photon (6, 10, 15 MV) and electron (6, 20 MeV) beams via proposed method. The PSM-corrected images reproduced a horn-shaped profile for photon beams and a relative uniform profiles for electrons. For dosimetrically matched linacs equipped with aS1000 panels, PSM-corrected images showed increased 1D-Gamma passing rates for all energies, with an average 10.5% improvement for crossline and 37% for inline beam profiles. Similar improvements in the phantom study were observed with a maximum improvement of 32% for 15 MV and 22% for 20 MeV. The PSM value showed no significant change for all energies over a 3-month period. In conclusion, the proposed approach correct EPID response for both aS1000 and aS1200 panels. This strategy enables the possibility to standardize linac dosimetry QA and to benchmark linac performance utilizing EPID as the common detector.


Assuntos
Algoritmos , Equipamentos e Provisões Elétricas , Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Fótons , Controle de Qualidade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
6.
Brachytherapy ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964977

RESUMO

PURPOSE: High dose-rate (HDR) brachytherapy is integral for the treatment of numerous cancers. Preclinical studies involving HDR brachytherapy are limited. We aimed to describe a novel platform allowing multi-modality studies with clinical HDR brachytherapy and external beam irradiators, establish baseline dosimetry standard of a preclinical orthovoltage irradiator, to determine accurate dosimetric methods. METHODS: A dosimetric assessment of a commercial preclinical irradiator was performed establishing the baseline dosimetry goals for clinical irradiators. A 3D printed platform was then constructed with 14 brachytherapy channels at 1cm spacing to accommodate a standard tissue culture plate at a source-to-cell distance (SCD) of 1 cm or 0.4 cm. 4-Gy CT-based treatment plans were created in clinical treatment planning software and delivered to 96-well tissue culture plates using an Ir192 source or a clinical linear accelerator. Standard calculation models for HDR brachytherapy and external beam were compared to corresponding deterministic model-based dose calculation algorithms (MBDCAs). Agreement between predicted and measured dose was assessed with 2D-gamma passing rates to determine the best planning methodology. RESULTS: Mean (±standard deviation) and median dose measured across the plate for the preclinical irradiator was 423.7 ± 8.5 cGy and 430.0 cGy. Mean percentage differences between standard and MBDCA dose calculations were 9.4% (HDR, 1 cm SCD), 0.43% (HDR, 0.4 cm SCD), and 2.4% (EBRT). Predicted and measured dose agreement was highest for MBDCAs for all modalities. CONCLUSION: A 3D-printed tissue culture platform can be used for multi-modality irradiation studies with great accuracy. This tool will facilitate preclinical studies to reveal biologic differences between clinically relevant radiation modalities.

7.
Med Phys ; 51(7): 4996-5006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748998

RESUMO

BACKGROUND: A dosimeter with high spatial and temporal resolution would be of significant interest for pencil beam scanning (PBS) proton beams' characterization, especially when facing small fields and beams with high temporal dynamics. Optical imaging of scintillators has potential in providing sub-millimeter spatial resolution with pulse-by-pulse basis temporal resolution when the imaging system is capable of operating in synchrony with the beam-producing accelerator. PURPOSE: We demonstrate the feasibility of imaging PBS proton beams as they pass through a plastic scintillator detector to simultaneously obtain multiple beam parameters, including proton range, pencil beam's widths at different depths, spot's size, and spot's position on a pulse-by-pulse basis with sub-millimeter resolution. MATERIALS AND METHODS: A PBS synchrocyclotron was used for proton irradiation. A BC-408 plastic scintillator block with 30 × 30 × 5 cm3 size, and another block with 30 × 30 × 0.5 cm3 size, positioned in an optically sealed housing, were used sequentially to measure the proton range, and spot size/location, respectively. A high-speed complementary metal-oxide-semiconductor (CMOS) camera system synchronized with the accelerator's pulses through a gating module was used for imaging. Scintillation images, captured with the camera directly facing the 5-cm-thick scintillator, were corrected for background (BG), and ionization quenching of the scintillator to obtain the proton range. Spots' position and size were obtained from scintillation images of the 0.5-cm-thick scintillator when a 45° mirror was used to reflect the scintillation light toward the camera. RESULTS: Scintillation images with 0.16 mm/pixel resolution corresponding to all proton pulses were captured. Pulse-by-pulse analysis showed that variations of the range, spots' position, and size were within ± 0.2% standard deviation of their average values. The absolute ranges were within ± 1 mm of their expected values. The average spot-positions were mostly within ± 0.8 mm and spots' sigma agreed within 0.2 mm of the expected values. CONCLUSION: Scintillation-imaging PBS beams with high-spatiotemporal resolution is feasible and may help in efficient and cost-effective acceptance testing and commissioning of existing and even emerging technologies such as FLASH, grid, mini-beams, and so forth.


Assuntos
Contagem de Cintilação , Contagem de Cintilação/instrumentação , Prótons , Ciclotrons , Estudos de Viabilidade , Terapia com Prótons/instrumentação
8.
Med Phys ; 39(10): 6407-19, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039676

RESUMO

PURPOSE: This work describes an independent method to use the TomoTherapy Hi-ART megavoltage CT imaging system for daily monitoring of anatomical changes of cancer patients whose anatomy extends beyond the imaging field of view. METHODS: The imaging detector response to changes in attenuating media was measured using water-equivalent plastic. Weight loss was simulated using an anthropomorphic phantom and determining the system's ability to detect the weight loss. Layers of tissue-equivalent bolus were added to an anthropomorphic pelvis phantom and CT simulations of the phantom were conducted, one in which the phantom and bolus were both within the TomoTherapy imaging field of view, and another in which the couch was raised so that the bolus was outside the field of view. Gynecological treatment plans were developed using the TomoTherapy treatment planning system, and successive fractions of the plan were then delivered to the phantom. Weight loss was simulated by removing a 0.5 cm layer of bolus following each fraction. The exit detector sinograms were obtained from each fraction, and ratios of sinograms were calculated relative to a reference sinogram for which all bolus was in place. Histograms of ratio sinograms were determined and used to correlate with simulated weight loss. Exit detector sinograms and ratio histograms were also retrospectively analyzed for five patients all of whose anatomies extended beyond the imaging field of view and all of whom experienced weight variations exceeding 10% during treatment. RESULTS: Exit detector signal is well correlated to changes in attenuator thickness as demonstrated in both slab and anthropomorphic phantom geometries. Measured and expected signal increases agreed to within less than 2% for simulated weight loss on the anthropomorphic phantom. Exit detector signals for pelvic patients with significant weight loss variations were consistent with phantom measurements. CONCLUSIONS: The analysis of the ratio sinograms for the phantom measurements and real patients indicated that exit detector sinograms can be used to detect relative changes in patient anatomy for each fraction as a means of in vivo quality assurance.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Estudos de Viabilidade , Humanos , Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada
9.
Med Phys ; 39(8): 4726-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894397

RESUMO

PURPOSE: EcCk, which stands for Electronic Chart ChecK, is a computer software and database system. It was developed to improve quality and efficiency of patient chart checking in radiation oncology departments. The core concept is to automatically collect and analyze patient treatment data, and to report discrepancies and potential concerns. METHODS: EcCk consists of several different computer technologies, including relational database, DICOM, dynamic HTML, and image processing. Implemented in MATLAB and C#, EcCk processes patient data in DICOM, PDF, Microsoft Word, database, and Pinnacle native formats. Generated reports are stored on the storage server and indexed in the database. A standalone report-browser program is implemented to allow users to view reports on any computer in the department. Checks are performed according to predefined logical rules, and results are presented through color-coded reports in which discrepancies are summarized and highlighted. Users examine the reports and take appropriate actions. The core design is intended to automate human task and to improve the reliability of the performed tasks. The software is not intended to replace human audits but rather to aid as a decision support tool. RESULTS: The software was successfully implemented in the clinical environment and has demonstrated the feasibility of automation of this common task with modern clinical tools. The software integrates multiple disconnected systems and successfully supports analysis of data in diverse formats. CONCLUSIONS: While the human is the ultimate expert, EcCk has a significant potential to improve quality and efficiency of patient treatment record audits, and to allow verification of tasks that are not easily performed by humans. EcCk can potentially relieve human experts from simple and repetitive tasks, and allow them to work on other important tasks, and in the end to improve the quality and safety of radiation therapy treatments.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Automação , Neoplasias Encefálicas/radioterapia , Bases de Dados Factuais , Técnicas de Apoio para a Decisão , Sistemas Inteligentes , Humanos , Sistemas Computadorizados de Registros Médicos , Linguagens de Programação , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Radioterapia (Especialidade)/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Segurança , Software , Interface Usuário-Computador
10.
Pract Radiat Oncol ; 12(2): e117-e122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34695615

RESUMO

PURPOSE: The use of prostate fiducial markers and perirectal hydrogel spacers can reduce the acute and late toxic effects associated with prostate radiation therapy. These procedures are usually performed days to weeks before simulation during a separate clinic visit to ensure resolution of procedure-related inflammation. The purpose of this study was to assess whether same-day intraprostatic fiducial marker placement, perirectal hydrogel injection, and computed tomography (CT) and magnetic resonance imaging (MRI) simulation were feasible without adversely affecting hydrogel volume, perirectal spacing, or rectal dose. If feasible, performing these procedures on the same day as simulation would expedite the start of radiation therapy, improve patient convenience, and reduce costs. METHODS AND MATERIALS: Twenty-one patients with clinically localized prostate cancer who were enrolled on a prospective clinical trial (NCT01617161) underwent same-day marker placement, hydrogel injection, and CT and MRI simulation, then underwent T2 MRI verification scans 3 to 4 weeks later. The MRI scans were fused to the CT planning scans by clinical target volumes (CTVs) to generate comparison treatment plans (70 Gy in 28 fractions). Hydrogel volume and symmetry, perirectal spacing, CTV dose, and organ-at-risk dose were evaluated. RESULTS: Verification scans occurred a mean of 24.9 ± 4.6 days after simulation and 9.3 ± 4.9 days after treatment start. Prostate volume did not change between scans (median, 67.3 ± 22.1 cm3 vs 64.1 ± 21.8 cm3; P = .64). The median hydrogel change between simulation and verification was -1.8% ± 4.5% (P = .27). No significant differences in perirectal spacing (midgland: 1.33 ± 0.45 cm vs 1.3 ± 0.7 cm; 1 cm superior: 1.25 ± 0.95 cm vs 1.43 ± 0.91 cm; 1 cm inferior: 1.16 ± 0.28 cm vs 1.41 ± 0.49 cm) were identified. No significant differences in rectal V66 (median 2.3 ± 2.18% vs 2.3 ± 2.28%; P = .99), V35 (median 14.79 ± 7.61 vs 14.67 ± 8.4; P = .73), or D1cc (65.7 ± 9.2 Gy vs 68.2 ± 9.0 Gy; P = .80) were found. All plans met CTV and organ-at-risk constraints. CONCLUSION: Same-day placement of intraprostatic fiducial markers, perirectal hydrogel, and simulation scans was feasible and did not significantly affect hydrogel volume, position, CTV coverage, or rectal dose.


Assuntos
Marcadores Fiduciais , Neoplasias da Próstata , Estudos de Viabilidade , Humanos , Hidrogéis/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/efeitos da radiação , Tomografia Computadorizada por Raios X
11.
Med Phys ; 38(1): 67-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361176

RESUMO

PURPOSE: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). METHODS: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. RESULTS: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. CONCLUSIONS: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research. 0 2011 Ameri-


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radioterapia/métodos , Pesquisa , Software , Algoritmos , Comportamento Cooperativo , Licenciamento , Software/legislação & jurisprudência , Software/provisão & distribuição , Fatores de Tempo , Tomografia Computadorizada por Raios X , Interface Usuário-Computador
12.
Med Phys ; 38(1): 504-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21361219

RESUMO

The requirement of an independent verification of the monitor units (MU) or time calculated to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance. The need for and value of such a verification was obvious when calculations were performed by hand using look-up tables, and the verification was achieved by a second person independently repeating the calculation. However, in a modern clinic using CT/MR/PET simulation, computerized 3D treatment planning, heterogeneity corrections, and complex calculation algorithms such as convolution/superposition and Monte Carlo, the purpose of and methodology for the MU verification have come into question. In addition, since the verification is often performed using a simpler geometrical model and calculation algorithm than the primary calculation, exact or almost exact agreement between the two can no longer be expected. Guidelines are needed to help the physicist set clinically reasonable action levels for agreement. This report addresses the following charges of the task group: (1) To re-evaluate the purpose and methods of the "independent second check" for monitor unit calculations for non-IMRT radiation treatment in light of the complexities of modern-day treatment planning. (2) To present recommendations on how to perform verification of monitor unit calculations in a modern clinic. (3) To provide recommendations on establishing action levels for agreement between primary calculations and verification, and to provide guidance in addressing discrepancies outside the action levels. These recommendations are to be used as guidelines only and shall not be interpreted as requirements.


Assuntos
Física , Radioterapia/métodos , Relatório de Pesquisa , Sociedades , Algoritmos , Computadores , Humanos , Controle de Qualidade , Radiometria , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Projetos de Pesquisa , Estados Unidos
13.
Int J Radiat Oncol Biol Phys ; 111(4): 1023-1032, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217790

RESUMO

PURPOSE: Noninvasive cardiac radioablation is increasingly used for treatment of refractory ventricular tachycardia. Attempts to limit normal tissue exposure are important, including managing motion of the target. An interplay between cardiac and respiratory motion exists for cardiac radioablation, which has not been studied in depth. The objectives of this study were to estimate target motion during abdominal compression free breathing (ACFB) and respiratory gated (RG) deliveries and to investigate the quality of either implanted cardioverter defibrillator lead tip or the diaphragm as a gating surrogate. METHODS AND MATERIALS: Eleven patients underwent computed tomography (CT) simulation with an ACFB 4-dimensional CT (r4DCT) and an exhale breath-hold cardiac 4D-CT (c4DCT). The target, implanted cardioverter defibrillator lead tip and diaphragm trajectories were measured for each patient on the r4DCT and c4DCT using rigid registration of each 4D phase to the reference (0%) phase. Motion ranges for ACFB and exhale (40%-60%) RG delivery were estimated from the target trajectories. Surrogate quality was estimated as the correlation with the target motion magnitudes. RESULTS: Mean (range) target motion across patients from r4DCT was as follows: left/right (LR), 3.9 (1.7-6.9); anteroposterior (AP), 4.1 (2.2-5.4); and superoinferior (SI), 4.7 (2.2-7.9) mm. Mean (range) target motion from c4DCT was as follows: LR, 3.4 (1.0-4.8); AP, 4.3 (2.6-6.5); and SI, 4.1 (1.4-8.0) mm. For an ACFB, treatment required mean (range) margins to be 4.5 (3.1-6.9) LR, 4.8 (3-6.5) AP, and 5.5 (2.3-8.0) mm SI. For RG, mean (range) internal target volume motion would be 3.6 (1.1-4.8) mm LR, 4.3 (2.6-6.5) mm AP, and 4.2 (2.2-8.0) mm SI. The motion correlations between the surrogates and target showed a high level of interpatient variability. CONCLUSIONS: In ACFB patients, a simulated exhale-gated approach did not lead to large projected improvements in margin reduction. Furthermore, the variable correlation between readily available gating surrogates could mitigate any potential advantage to gating and should be evaluated on a patient-specific basis.


Assuntos
Tomografia Computadorizada Quadridimensional , Taquicardia Ventricular , Coração/diagnóstico por imagem , Humanos , Movimento (Física) , Respiração , Taquicardia Ventricular/diagnóstico por imagem
14.
Med Phys ; 48(6): 3143-3150, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33763897

RESUMO

PURPOSE: To characterize the shielding design and leakage radiation from a newly released ring gantry linac (Halcyon, Varian Medical Systems). METHODS: To assess the radiation leakage surrounding headshield and the radiation level after the beam stopper, measurements were made with GafChromic films. To evaluate the in-room radiation levels, the radiation leakage in the isocenter plane was measured with a large volume spherical ionization chamber (Exradin A6, Standard Imaging). A lead enclosure was constructed to shield the chamber from the low energy scatter radiation from the room. The radiation level at multiple locations was measured with the MLC fully closed and gantry at 0, 45, 90, 135, 180, 225, 270, and 315 degrees. The leakage radiation passing through multiple concrete slabs with various thickness was recorded in a narrow beam geometry to determine the tenth value layer (TVL). RESULTS: A uniform leakage (<0.05%) at 1 m from electron beam line was measured surrounding the linac head with the maximum leakage measured at the top of the head enclosure. The highest radiation level (<0.08%) was measured near the edge of the beam stopper when projected to the measurement plane. The maximum radiation levels due to the head leakage at 15 locations inside the treatment room were recorded and a radiation map was plotted. The maximum leakage was measured at points that along the electron beam line while the gantry at 90 or 270 degree and at the end of head enclosure (0.314%, 0.4 m from electron beamline). The leakage TVL value is found to be 226 mm in a narrow beam geometry with the concrete density of 2.16 g/cm3 or 134.6 lb/cu.ft. CONCLUSION: An overall uniform leakage was measured surrounding linac head. The beam stopper shields the primary radiation with the highest valued measured near the edge of beam stopper. The leakage TVL values are derived and less than the values reported for conventional C-arm linac.


Assuntos
Cabeça , Aceleradores de Partículas , Espalhamento de Radiação
15.
Med Phys ; 37(8): 4068-77, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879568

RESUMO

PURPOSE: To investigate a protocol which efficiently localizes TomoTherapy patients with a scout imaging (topogram) mode that can be used with or instead of 3D megavoltage computed tomography (MVCT) imaging. METHODS: The process presented here is twofold: (a) The acquisition of the topogram using the TomoTherapy MV imaging system and (b) the generation of a digitally reconstructed topogram (DRT) derived from a standard kV CT simulation data set. The unique geometric characteristics of the current TomoTherapy imaging system were explored both theoretically and by acquiring topograms of anthropomorphic phantoms and comparing these images to DRT images. The performance of the MV topogram imaging system in terms of image quality, dose incurred to the patient, and acquisition time was investigated using ionization chamber and radiographic film measurements. RESULTS: The time required to acquire a clinically usable topogram, limited by the maximum couch speed of 4.0 cm s(-1), was 12.5 s for a 50 cm long field. The patient dose was less than 1% of that delivered by a helical MVCT scan. Further refinements within the current TomoTherapy system, most notably decreasing the imaging beam repetition rate during MV topogram acquisition, would further reduce the topogram dose to less than 25 microGy per scan without compromising image quality. CONCLUSIONS: Topogram localization on TomoTherapy is a fast and low-dose alternative to 3D MVCT localization. A protocol designed that exclusively utilized MV topograms would result in a 30-fold reduction in imaging time and a 100-fold reduction in dose from localization scans using the current TomoTherapy workflow.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Humanos , Proteção Radiológica/métodos , Dosagem Radioterapêutica
16.
Med Phys ; 37(1): 141-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20175475

RESUMO

In radiation therapy applications, deformable image registrations (DIRs) are often carried out between two images that only partially match. Image mismatching could present as superior-inferior coverage differences, field-of-view (FOV) cutoffs, or motion crossing the image boundaries. In this study, the authors propose a method to improve the existing DIR algorithms so that DIR can be carried out in such situations. The basic idea is to extend the image volumes and define the extension voxels (outside the FOV or outside the original image volume) as NaN (not-a-number) values that are transparent to all floating-point computations in the DIR algorithms. Registrations are then carried out with one additional rule that NaN voxels can match any voxels. In this way, the matched sections of the images are registered properly, and the mismatched sections of the images are registered to NaN voxels. This method makes it possible to perform DIR on partially matched images that otherwise are difficult to register. It may also improve DIR accuracy, especially near or in the mismatched image regions.


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Inteligência Artificial , Humanos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
17.
Med Phys ; 37(9): 4817-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964201

RESUMO

Helical tomotherapy is a relatively new modality with integrated treatment planning and delivery hardware for radiation therapy treatments. In view of the uniqueness of the hardware design of the helical tomotherapy unit and its implications in routine quality assurance, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 148 to review this modality and make recommendations for quality assurance related methodologies. The specific objectives of this Task Group are: (a) To discuss quality assurance techniques, frequencies, and tolerances and (b) discuss dosimetric verification techniques applicable to this unit. This report summarizes the findings of the Task Group and aims to provide the practicing clinical medical physicist with the insight into the technology that is necessary to establish an independent and comprehensive quality assurance program for a helical tomotherapy unit. The emphasis of the report is to describe the rationale for the proposed QA program and to provide example tests that can be performed, drawing from the collective experience of the task group members and the published literature. It is expected that as technology continues to evolve, so will the test procedures that may be used in the future to perform comprehensive quality assurance for helical tomotherapy units.


Assuntos
Comitês Consultivos , Radioterapia/normas , Pesquisa , Sociedades Científicas , Calibragem , Diretrizes para o Planejamento em Saúde , Humanos , Controle de Qualidade , Radiometria , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
18.
J Neurosurg ; 135(3): 855-861, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33307528

RESUMO

OBJECTIVE: The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non-small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS: The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS: Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31-86 years). The median follow-up was 7.6 months (range 0.5-81.6 months), and the median survival was 9.3 months (range 1.3-81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was ≥ and < 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 ≥ and < 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 ≥ and < 25%, respectively. Lesions > 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 ≥ and < 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS: For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 ≥ 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation.

19.
Med Phys ; 36(2): 329-38, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19291972

RESUMO

In adaptive radiation therapy the treatment planning kilovoltage CT (kVCT) images need to be registered with daily CT images. Daily megavoltage CT (MVCT) images are generally noisier than the kVCT images. In addition, in the abdomen, low image contrast, differences in bladder filling, differences in bowel, and rectum filling degrade image usefulness and make deformable image registration very difficult. The authors have developed a procedure to overcome these difficulties for better deformable registration between the abdominal kVCT and MVCT images. The procedure includes multiple image preprocessing steps and a two deformable registration steps. The image preprocessing steps include MVCT noise reduction, bowel gas pockets detection and painting, contrast enhancement, and intensity manipulation for critical organs. The first registration step is carried out in the local region of the critical organs (bladder, prostate, and rectum). It requires structure contours of these critical organs on both kVCT and MVCT to obtain good registration accuracy on these critical organs. The second registration step uses the first step results and registers the entire image with less intensive computational requirement. The two-step approach improves the overall computation speed and works together with these image preprocessing steps to achieve better registration accuracy than a regular single step registration. The authors evaluated the procedure on multiple image datasets from prostate cancer patients and gynecological cancer patients. Compared to rigid alignment, the proposed method improves volume matching by over 60% for the critical organs and reduces the prostate landmark registration errors by 50%.


Assuntos
Abdome , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/métodos , Abdome/efeitos da radiação , Bases de Dados Factuais , Feminino , Neoplasias dos Genitais Femininos/diagnóstico por imagem , Neoplasias dos Genitais Femininos/radioterapia , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiografia Abdominal , Tomografia Computadorizada por Raios X
20.
Phys Med Biol ; 54(8): 2315-22, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19305040

RESUMO

The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.


Assuntos
Pulmão/efeitos da radiação , Doses de Radiação , Radioterapia/métodos , Neoplasias Esofágicas/radioterapia , Dosimetria Fotográfica , Humanos , Mediastino/efeitos da radiação , Modelos Biológicos , Imagens de Fantasmas , Controle de Qualidade , Radiometria , Radioterapia/normas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/normas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA