Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 108(1): 231-243, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309934

RESUMO

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Assuntos
Locos de Características Quantitativas/genética , Sorghum/genética , Produtos Agrícolas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Fenótipo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento
2.
Planta ; 257(1): 8, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481955

RESUMO

MAIN CONCLUSION: When gene editing was applied to knockout beta-kafirin, there was a compensatory increase of gamma-kafirin which does not occur in domesticated null varieties, so enhanced grain quality was not achieved. Sorghum bicolor is an important animal feedstock cereal crop throughout Australia and the southern United States, where its use as a food product is limited by issues with low calorific and nutritive value. Qualities such as reduced digestibility and low essential amino acid content are directly attributed to the kafirin grain storage proteins, the major components of protein bodies within the endosperm. Specifically, the ß- and γ-kafirins have few protease cleavage sites and high levels of cysteine residues which lead to a highly cross-linked shell of intra- and inter-molecular disulphide linkages that encapsulate the more digestible α- and δ-kafirins in the core of the protein bodies. Naturally occurring ß-kafirin mutants exist and are known to have improved grain quality, with enhanced protein contents and digestibility, traits which are often attributed to the lack of this cysteine-rich kafirin in the mature grain. However, when CRISPR/Cas9 editing was used to create ß-kafirin knockout lines, there was no improvement to grain quality in the Tx430 background, although they did have unique protein composition and changes to protein body morphology in the vitreous endosperm. One explanation of the divergence in quality traits found the lines lacking ß-kafirin are due to a drastic increase of γ-kafirin which was only found in the gene edited lines. This study highlights that in some germplasm, there is a level of redundancy between the peripheral kafirins, and that improvement of grain protein digestibility cannot be achieved by simply removing the ß-kafirin protein in all genetic backgrounds.


Assuntos
Sorghum , Sorghum/genética , Cisteína , Austrália
3.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35961690

RESUMO

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Assuntos
Secas , Sorghum , Locos de Características Quantitativas/genética , Sorghum/fisiologia , Fenótipo , Adaptação Fisiológica/genética , Grão Comestível/genética
4.
Theor Appl Genet ; 135(4): 1355-1373, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113190

RESUMO

KEY MESSAGE: Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.


Assuntos
Basidiomycota , Triticum , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética
5.
Plant Cell Rep ; 41(2): 489-492, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854968

RESUMO

KEY MESSAGE: Endogenous U6 promoters increase CRISPR/Cas9 editing efficiency in sorghum and may be useful for gene editing applications in other cereals.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Regiões Promotoras Genéticas , Sorghum/genética , Grão Comestível/genética , Plantas Geneticamente Modificadas
6.
Breed Sci ; 72(3): 238-247, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36408321

RESUMO

Low temperatures at the young microspore stage (YMS) decreases spikelet fertility and is a major limiting factor to rice production in temperate Australia. Low temperature tolerance is a difficult trait to phenotype, hence there is a strong desire for the identification of quantitative trait loci (QTL) for their use in marker-assisted selection (MAS). Association mapping was used in several breeding populations with a known source of low temperature tolerance, Norin PL8, to identify QTL for low temperature tolerance. A novel QTL for spikelet fertility was identified on chromosome 6, qYMCT6.1, in which the Australian variety, Kyeema, was the donor for increased fertility. Additional five genomics regions were identified that co-located with previously reported QTL, two of which have been previously cloned. Additionally, for the first time a QTL for spikelet fertility qYMCT10.1, has been shown to co-locate with the number of dehisced anthers qYMCTF10.1 which increases the shedding of pollen from the anthers. This study revealed one new QTL for low temperature tolerance at YMS in temperate japonica germplasm and identified an additional five previously reported. These QTL will be utilised for MAS in the Australian rice breeding program and may have merit for temperate breeding programs globally.

7.
Theor Appl Genet ; 134(6): 1691-1709, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33420514

RESUMO

KEY MESSAGE: Integrating CRISPR/Cas9 genome editing into modern breeding programs for crop improvement in cereals. Global climate trends in many agricultural regions have been rapidly changing over the past decades, and major advances in global food systems are required to ensure food security in the face of these emerging challenges. With increasing climate instability due to warmer temperatures and rising CO2 levels, the productivity of global agriculture will continue to be negatively impacted. To combat these growing concerns, creative approaches will be required, utilising all the tools available to produce more robust and tolerant crops with increased quality and yields under more extreme conditions. The integration of genome editing and transgenics into current breeding strategies is one promising solution to accelerate genetic gains through targeted genetic modifications, producing crops that can overcome the shifting climate realities. This review focuses on how revolutionary genome editing tools can be directly implemented into breeding programs for cereal crop improvement to rapidly counteract many of the issues affecting agriculture production in the years to come.


Assuntos
Sistemas CRISPR-Cas , Mudança Climática , Produtos Agrícolas/genética , Grão Comestível/genética , Edição de Genes , Agricultura , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Temperatura Alta , Fenótipo , Melhoramento Vegetal
8.
Theor Appl Genet ; 134(9): 2823-2839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34061222

RESUMO

KEY MESSAGE: QTL mapping identified key genomic regions associated with adult-plant resistance to tan spot, which are effective even in the presence of the sensitivity gene Tsn1, thus serving as a new genetic solution to develop disease-resistant wheat cultivars. Improving resistance to tan spot (Pyrenophora tritici-repentis; Ptr) in wheat by eliminating race-specific susceptibility genes is a common breeding approach worldwide. The potential to exploit variation in quantitative forms of resistance, such as adult-plant resistance (APR), offers an alternative approach that could lead to broad-spectrum protection. We previously identified wheat landraces in the Vavilov diversity panel that exhibited high levels of APR despite carrying the sensitivity gene Tsn1. In this study, we characterised the genetic control of APR by developing a recombinant inbred line population fixed for Tsn1, but segregating for the APR trait. Linkage mapping using DArTseq markers and disease response phenotypes identified a QTL associated with APR to Ptr race 1 (producing Ptr ToxA- and Ptr ToxC) on chromosome 2B (Qts.313-2B), which was consistently detected in multiple adult-plant experiments. Additional loci were also detected on chromosomes 2A, 3D, 5A, 5D, 6A, 6B and 7A at the seedling stage, and on chromosomes 1A and 5B at the adult stage. We demonstrate that Qts.313-2B can be combined with other adult-plant QTL (i.e. Qts.313-1A and Qts.313-5B) to strengthen resistance levels. The APR QTL reported in this study provide a new genetic solution to tan spot in Australia and could be deployed in wheat cultivars, even in the presence of Tsn1, to decrease production losses and reduce the application of fungicides.


Assuntos
Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
9.
Plant Biotechnol J ; 18(12): 2388-2405, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32875704

RESUMO

Agricultural production faces a Herculean challenge to feed the increasing global population. Food production systems need to deliver more with finite land and water resources while exerting the least negative influence on the ecosystem. The unpredictability of climate change and consequent changes in pests/pathogens dynamics aggravate the enormity of the challenge. Crop improvement has made significant contributions towards food security, and breeding climate-smart cultivars are considered the most sustainable way to accelerate food production. However, a fundamental change is needed in the conventional breeding framework in order to respond adequately to the growing food demands. Progress in genomics has provided new concepts and tools that hold promise to make plant breeding procedures more precise and efficient. For instance, reference genome assemblies in combination with germplasm sequencing delineate breeding targets that could contribute to securing future food supply. In this review, we highlight key breakthroughs in plant genome sequencing and explain how the presence of these genome resources in combination with gene editing techniques has revolutionized the procedures of trait discovery and manipulation. Adoption of new approaches such as speed breeding, genomic selection and haplotype-based breeding could overcome several limitations of conventional breeding. We advocate that strengthening varietal release and seed distribution systems will play a more determining role in delivering genetic gains at farmer's field. A holistic approach outlined here would be crucial to deliver steady stream of climate-smart crop cultivars for sustainable agriculture.


Assuntos
Produtos Agrícolas , Ecossistema , Agricultura , Produtos Agrícolas/genética , Genoma de Planta/genética , Genômica
10.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31659829

RESUMO

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Assuntos
Estudos de Associação Genética , Sementes/crescimento & desenvolvimento , Sorghum/genética , Fenótipo , Locos de Características Quantitativas , Sorghum/crescimento & desenvolvimento
11.
J Therm Biol ; 90: 102606, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32479400

RESUMO

Understanding circadian rhythms of body temperature is important for the interpretation of single body temperature measurements and the assessment of the physiological state of an animal. The ability to measure body temperature at peripheral locations may also be important in the development of minimally invasive tools for remote temperature measurement in livestock. This study aimed to investigate how well body temperature measured at peripheral sites reflected a commonly used core measurement (vaginal temperature) and the circadian rhythmicity of the body temperature of sheep with a view to practical application in extensive sheep production systems. Eleven crossbred ewes were implanted with peripheral temperature sensing microchips (LifeChip®) which were positioned transversely in the sternocleidomastoid (neck) muscle and subcutaneously under the tail. iButton® temperature loggers were placed intravaginally to record core body temperature measurements (Tv). The body temperature measurements observed at the peripheral sites in the neck (Tn) and tail (Tt) differed significantly to those measured at the core site, Tv (P < 0.05), with Tn lower than Tv and Tt lower than both Tv and Tn. Similarities in circadian rhythm patterns were observed across the day between Tv, Tn and Tt in repeated measures analysis, with a short period of difference between Tv and Tn (from 1400 to 1600 h) and a long period of difference between Tv and Tt (from 1000 to 2100 h) (P < 0.05). These results suggest that neck muscle temperature measurements may have utility in detecting circadian rhythm patterns in core temperature in sheep, but may not accurately reflect absolute core temperatures. Peripheral measures may require adjustment or correction to more accurately reflect absolute core temperature with respect to determining accurate clinical thresholds relative to the expected normal temperature for the time of day observed. Further investigation into the utility and application of peripheral measurement of body temperature is warranted.


Assuntos
Temperatura Corporal , Ritmo Circadiano/fisiologia , Ovinos/fisiologia , Animais , Feminino , Músculo Esquelético/fisiologia , Pescoço , Cauda , Vagina
12.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1242-1255, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32333622

RESUMO

Nitrate ( NO 3 - ) supplementation is an effective methane (CH4 ) mitigation strategy for ruminants but may produce nitrite ( NO 2 - ) toxicity. It has been reported that rumen protozoa have greater ability for NO 3 - and NO 2 - reduction than bacteria. It was hypothesised that the absence of ruminal protozoa in sheep may lead to higher NO 2 - accumulation in the rumen and a higher blood methaemoglobin (MetHb) concentration. An in vivo experiment was conducted with defaunated (DEF) and faunated (FAU) sheep supplemented with 1.8% NO 3 - in DM. The effects of rumen protozoa on concentrations of plasma and ruminal NO 3 - and NO 2 - , blood MetHb, ruminal volatile fatty acid (VFA) and ruminal ammonia (NH3 ) were investigated. Subsequently, two in vitro experiments were conducted to determine the contribution of protozoa to NO 3 - and NO 2 - reduction rates in DEF and FAU whole rumen digesta (WRD) and its liquid (LIQ) and solid (SOL) fractions, incubated alone (CON), with the addition of NO 3 - or with the addition of NO 2 - . The results from the in vivo experiment showed no differences in total VFA concentrations, although ruminal NH3 was greater (p < .01) in FAU sheep. Ruminal NO 3 - , NO 2 - and plasma NO 2 - concentrations tended to increase (p < .10) 1.5 hr after feeding in FAU relative to DEF sheep. In vitro results showed that NO 3 - reduction to NH3 was stimulated (p < .01) by incoming NO 3 - in both DEF and FAU relative to CON digesta. However, adding NO 3 - increased (p < .05) the rate of NO 2 - accumulation in the SOL fraction of DEF relative to both fractions of FAU digesta. Results observed in vivo and in vitro suggest that NO 3 - and NO 2 - are more rapidly metabolised in the presence of rumen protozoa. Defaunated sheep may have an increased risk of NO 2 - poisoning due to NO 2 - accumulation in the rumen.


Assuntos
Ração Animal/análise , Dieta/veterinária , Nitratos/metabolismo , Nitritos/metabolismo , Rúmen/metabolismo , Ovinos/fisiologia , Amônia , Animais , Suplementos Nutricionais , Eucariotos , Feminino , Fermentação , Conteúdo Gastrointestinal/química , Concentração de Íons de Hidrogênio , Rúmen/química , Rúmen/parasitologia , Ovinos/metabolismo
13.
Plant J ; 95(3): 557-567, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29761864

RESUMO

Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T0 transgenic plants, which will be widely used in the area of plant gene editing.


Assuntos
Edição de Genes/métodos , Ensaios de Triagem em Larga Escala/métodos , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Arabidopsis/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Triagem de Portadores Genéticos , Homozigoto , Oryza/genética , Sorghum/genética , Zea mays/genética
14.
Plant Biotechnol J ; 17(1): 220-232, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873878

RESUMO

Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C4 photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C3 model plant tobacco, progress in C4 monocot crops has been lagging behind. In this study, we report the accumulation of triacylglycerol in sorghum leaf tissues to levels between 3 and 8.4% on a dry weight basis depending on leaf and plant developmental stage. This was achieved by the combined overexpression of genes encoding the Zea mays WRI1 transcription factor, Umbelopsis ramanniana UrDGAT2a acyltransferase and Sesamum indicum Oleosin-L oil body protein. Increased oil content was visible as lipid droplets, primarily in the leaf mesophyll cells. A comparison between a constitutive and mesophyll-specific promoter driving WRI1 expression revealed distinct changes in the overall leaf lipidome as well as transitory starch and soluble sugar levels. Metabolome profiling uncovered changes in the abundance of various amino acids and dicarboxylic acids. The results presented here are a first step forward towards the development of sorghum as a dedicated biomass oil crop and provide a basis for further combinatorial metabolic engineering.


Assuntos
Lipídeos/biossíntese , Folhas de Planta/metabolismo , Óleos de Plantas/análise , Sorghum/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Folhas de Planta/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sorghum/química , Amido/análise , Amido/metabolismo , Triglicerídeos/metabolismo , Regulação para Cima
15.
Theor Appl Genet ; 132(1): 149-162, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30327845

RESUMO

KEY MESSAGE: GWAS detected 11 yellow spot resistance QTL in the Vavilov wheat collection. Promising adult-plant resistance loci could provide a sustainable genetic solution to yellow spot in modern wheat varieties. Yellow spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is the most economically damaging foliar disease of wheat in Australia. Genetic resistance is considered to be the most sustainable means for disease management, yet the genomic regions underpinning resistance to Ptr, particularly adult-plant resistance (APR), remain vastly unknown. In this study, we report results of a genome-wide association study using 295 accessions from the Vavilov wheat collection which were extensively tested for response to Ptr infections in glasshouse and field trials at both seedling an adult growth stages. Combining phenotypic datasets from multiple experiments in Australia and Russia with 25,286 genome-wide, high-quality DArTseq markers, we detected a total of 11 QTL, of which 5 were associated with seedling resistance, 3 with all-stage resistance, and 3 with APR. Interestingly, the novel APR QTL were effective even in the presence of host sensitivity gene Tsn1. These genomic regions could offer broad-spectrum yellow spot protection, not just to ToxA but also other pathogenicity or virulence factors. Vavilov wheat accessions carrying APR QTL combinations displayed enhanced levels of resistance highlighting the potential for QTL stacking through breeding. We propose that the APR genetic factors discovered in our study could be used to improve resistance levels in modern wheat varieties and contribute to the sustainable control of yellow spot.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Austrália , Estudos de Associação Genética , Genótipo , Haplótipos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Federação Russa , Triticum/microbiologia
16.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1657-1662, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418937

RESUMO

Nitrate (NO3 ¯ ) is an effective non-protein nitrogen source for gut microbes and reduces enteric methane (CH4 ) production in ruminants. Nitrate is reduced to ammonia by rumen bacteria with nitrite (NO2 ¯ ) produced as an intermediate. The absorption of NO2 ¯ can cause methaemoglobinaemia in ruminants. Metabolism of NO3 ¯ and NO2 ¯ in blood and animal tissues forms nitric oxide (NO) which has profound physiological effects in ruminants and has been shown to increase glucose uptake and insulin secretion in rodents and humans. We hypothesized that absorption of small quantities of NO2 ¯ resulting from a low-risk dose of dietary NO3 ¯ will increase insulin sensitivity (SI ) and glucose uptake in sheep. We evaluated the effect of feeding sheep with a diet supplemented with 18 g NO3 ¯ /kg DM or urea (Ur) isonitrogenously to NO3 ¯ , on insulin and glucose dynamics. A glucose tolerance test using an intravenous bolus of 1 ml/kg LW of 24% (w/v) glucose was conducted in twenty sheep, with 10 sheep receiving 1.8% supplementary NO3 ¯ and 10 receiving supplementary urea isonitrogenously to NO3 ¯ . The MINMOD model used plasma glucose and insulin concentrations to estimate basal plasma insulin (Ib ) and basal glucose concentration (Gb ), insulin sensitivity (SI ), glucose effectiveness (SG ), acute insulin response (AIRg) and disposition index (DI). Nitrate supplementation had no effect on Ib (p > .05). The decrease in blood glucose occurred at the same rate in both dietary treatments (SG ; p = .60), and there was no effect of NO3 ¯ on either Gb , SI , AIRg or DI. This experiment found that the insulin dynamics assessed using the MINMOD model were not affected by NO3 ¯ administered to fasted sheep at a low dose of 1.8% NO3 ¯ in the diet.


Assuntos
Ração Animal/análise , Glicemia/efeitos dos fármacos , Dieta/veterinária , Resistência à Insulina/fisiologia , Nitratos/farmacologia , Ovinos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Metemoglobinemia/veterinária , Nitratos/administração & dosagem , Nitritos/sangue , Ovinos/sangue , Ureia/administração & dosagem , Ureia/farmacologia
17.
Chemistry ; 24(2): 351-355, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29171697

RESUMO

Metallic-phase molybdenum disulfide (1T-MoS2 ) nanosheets have proven to be highly active in the hydrogen evolution reaction (HER). We describe construction of photosensitizer functionalized 1T-MoS2 by covalently tethering the molecular photosensitizer [RuII (bpy)3 ]2+ (bpy=2,2'-bipyridine) on 1T-MoS2 nanosheets. This was achieved by covalently tethering the bpy ligand to 1T-MoS2 nanosheets, and subsequent complexation with [RuII (bpy)2 Cl2 ] to yield [RuII (bpy)3 ]-MoS2 . The obtained [RuII (bpy)3 ]-MoS2 nanosheets were characterized using infra-red, electronic absorption, X-ray photoelectron, and Raman spectroscopies, X-ray powder diffraction and electron microscopy. The fabricated material exhibited a significant improvement of photocurrent and HER performance, demonstrating the potential of such two-dimensional [RuII (bpy)3 ]-MoS2 constructs in photosensitized HER.

18.
Plant Biotechnol J ; 15(11): 1387-1396, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28301718

RESUMO

The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/imunologia , Sorghum/genética , Triticum/genética , Basidiomycota/patogenicidade , Colletotrichum/patogenicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença/imunologia , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação , Doenças das Plantas/microbiologia , Folhas de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sesquiterpenos/metabolismo , Triticum/enzimologia , Triticum/imunologia , Triticum/metabolismo , Fitoalexinas
19.
Plant Cell Rep ; 36(11): 1689-1700, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721521

RESUMO

KEY MESSAGE: The AGPase large subunit (shrunken-2) promoter was demonstrated to be active in the placentochalaza and endosperm of developing grain as well as the root tips in transgenic sorghum. The temporal and spatial expression patterns of the Sorghum bicolor Shrunken-2 (Sh2) promoter were evaluated using the green fluorescence protein reporter gene (gfp) in transgenic sorghum, within the context of upregulating starch biosynthesis in the developing grain. GFP fluorescence was analysed throughout development in various tissue types using confocal laser scanning microscopy techniques. Sh2 promoter activity was first detected in the placentochalaza region of the developing caryopsis and apoplasm adjacent to the nucellar epidermis at 7 days post anthesis (dpa) where fluorescence remained relatively constant until 17 dpa. Fluorescence in this region weakened by 20 dpa and disappeared by 25 dpa. Expression was also detected in the developing endosperm, but not until 12 dpa, continuing until 25 dpa. Whilst the endosperm expression was expected, the fluorescence detected in the placentochalaza was completely unexpected. Although transcript presence does not mean the resulting biochemistry is also present, these preliminary findings may suggest alternate spatial activity of ADP-glucose pyrophosphorylase prior to uptake by the developing grain. Sh2 promoter activity was also unexpectedly detected in the root tips at all developmental time points. Sh2 promoter activity was not detected in any reproductive floral tissue (both pre and post anthesis) or in pollen. Similarly, no expression was detected in leaf tissue at any stage.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Sorghum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Sorghum/genética
20.
Plant Biotechnol J ; 14(12): 2240-2253, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27155090

RESUMO

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.


Assuntos
Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA