Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Behav Res Methods ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821751

RESUMO

This paper aims to compare a new webcam-based eye-tracking system, integrated into the Labvanced platform for online experiments, to a "gold standard" lab-based eye tracker (EyeLink 1000 - SR Research). Specifically, we simultaneously recorded data with both eye trackers in five different tasks, analyzing their real-time performance. These tasks were a subset of a standardized test battery for eye trackers, including a Large Grid task, Smooth Pursuit eye movements, viewing natural images, and two Head Movements tasks (roll, yaw). The results show that the webcam-based system achieved an overall accuracy of 1.4°, and a precision of 1.1° (standard deviation (SD) across subjects), an error of about 0.5° larger than the EyeLink system. Interestingly, both accuracy (1.3°) and precision (0.9°) were slightly better for centrally presented targets, the region of interest in many psychophysical experiments. Remarkably, the correlation of raw gaze samples between the EyeLink and webcam-based was at about 90% for the Large Grid task and about 80% for Free View and Smooth Pursuit. Overall, these results put the performance of the webcam-based system roughly on par with mobile eye-tracking devices (Ehinger et al. PeerJ, 7, e7086, 2019; Tonsen et al., 2020) and demonstrate substantial improvement compared to existing webcam eye-tracking solutions (Papoutsaki et al., 2017).

2.
Psychol Res ; 83(3): 498-513, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28770385

RESUMO

Theories of Enactivism propose an action-oriented approach to understand human cognition. So far, however, empirical evidence supporting these theories has been sparse. Here, we investigate whether spatial navigation based on allocentric reference frames that are independent of the observer's physical body can be understood within an action-oriented approach. Therefore, we performed three experiments testing the knowledge of the absolute orientation of houses and streets towards north, the relative orientation of two houses and two streets, respectively, and the location of houses towards each other in a pointing task. Our results demonstrate that under time pressure, the relative orientation of two houses can be retrieved more accurately than the absolute orientation of single houses. With infinite time for cognitive reasoning, the performance of the task using house stimuli increased greatly for the absolute orientation and surpassed the slightly improved performance in the relative orientation task. In contrast, with streets as stimuli participants performed under time pressure better in the absolute orientation task. Overall, pointing from one house to another house yielded the best performance. This suggests, first, that orientation and location information about houses are primarily coded in house-to-house relations, whereas cardinal information is deduced via cognitive reasoning. Second, orientation information for streets is preferentially coded in absolute orientations. Thus, our results suggest that spatial information about house and street orientation is coded differently and that house orientation and location is primarily learned in an action-oriented way, which is in line with an enactive framework for human cognition.


Assuntos
Cognição/fisiologia , Aprendizagem/fisiologia , Orientação Espacial/fisiologia , Resolução de Problemas/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Adulto , Feminino , Alemanha , Humanos , Masculino , Adulto Jovem
3.
Nutrients ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326623

RESUMO

It is a widely held view that humans have control over their food choices and consumption. However, research also suggests that eating behavior is often triggered by contextual cues and guided by automaticities and habits. Interestingly, the dichotomy between automatic and controlled processing has recently been challenged, suggesting that they may be intertwined. In a large female sample (n = 567), we investigated the hypothesis that task-based and self-reported measures of automatic and controlled processing would interact and impact self-reported eating behavior. Results analyzed via structural equation modeling suggest that automatic, but not controlled processing, during a modified flanker task, including a context-specific proportion congruent (CSPC) manipulation, was inversely associated with self-reported self-control. The influence of self-control on unhealthy eating behavior (i.e., uncontrolled and emotional eating, heightened consumption of fat and sugar) was only indirect via habitual behavior, which itself had a strong direct impact. Unhealthy eating was further associated with real-life outcomes (e.g., body mass index (BMI)). Our findings suggest that eating behavior may indeed be guided primarily by automaticities and habits, whereas self-control might facilitate this association. Having self-control over eating might therefore be most effective by avoiding contextual cues eliciting undesired automatic behavior and establishing habits that serve long-term goals.


Assuntos
Sinais (Psicologia) , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Hábitos , Autocontrole/psicologia , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
4.
Front Behav Neurosci ; 10: 187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774057

RESUMO

A large number of studies suggest that the integration of multisensory signals by humans is well-described by Bayesian principles. However, there are very few reports about cue combination between a native and an augmented sense. In particular, we asked the question whether adult participants are able to integrate an augmented sensory cue with existing native sensory information. Hence for the purpose of this study, we build a tactile augmentation device. Consequently, we compared different hypotheses of how untrained adult participants combine information from a native and an augmented sense. In a two-interval forced choice (2 IFC) task, while subjects were blindfolded and seated on a rotating platform, our sensory augmentation device translated information on whole body yaw rotation to tactile stimulation. Three conditions were realized: tactile stimulation only (augmented condition), rotation only (native condition), and both augmented and native information (bimodal condition). Participants had to choose one out of two consecutive rotations with higher angular rotation. For the analysis, we fitted the participants' responses with a probit model and calculated the just notable difference (JND). Then, we compared several models for predicting bimodal from unimodal responses. An objective Bayesian alternation model yielded a better prediction (χred2 = 1.67) than the Bayesian integration model (χred2 = 4.34). Slightly higher accuracy showed a non-Bayesian winner takes all (WTA) model (χred2 = 1.64), which either used only native or only augmented values per subject for prediction. However, the performance of the Bayesian alternation model could be substantially improved (χred2 = 1.09) utilizing subjective weights obtained by a questionnaire. As a result, the subjective Bayesian alternation model predicted bimodal performance most accurately among all tested models. These results suggest that information from augmented and existing sensory modalities in untrained humans is combined via a subjective Bayesian alternation process. Therefore, we conclude that behavior in our bimodal condition is explained better by top down-subjective weighting than by bottom-up weighting based upon objective cue reliability.

5.
PLoS One ; 11(12): e0166647, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959914

RESUMO

Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation.


Assuntos
Estado de Consciência , Aprendizagem , Córtex Sensório-Motor/fisiologia , Percepção Espacial , Adulto , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Sono
6.
Sci Rep ; 5: 11426, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073656

RESUMO

Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants' cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants' navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-23412683

RESUMO

Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw) or the vertical (pitch) axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260) consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes) and 46.5% as Non-turners (using an allocentric reference frame on both axes). 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher). Investigating the influence of gender on navigation strategies revealed that females predominantly used the Non-turner strategy while males used both the Turner and the Non-turner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Non-turners, Switchers) for spatial updating and provides a sound estimate of how those strategies are distributed within the general population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA