Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 235: 116580, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37474094

RESUMO

Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.


Assuntos
Quitosana , Diabetes Mellitus , Humanos , Bandagens , Cicatrização , Antibacterianos/farmacologia
2.
Int J Mol Sci ; 18(5)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441344

RESUMO

Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Ouriços-do-Mar/metabolismo , Engenharia Tecidual , Animais , Materiais Biocompatíveis/metabolismo , Colágeno/metabolismo , Módulo de Elasticidade , Resistência ao Cisalhamento
3.
Environ Sci Pollut Res Int ; 31(30): 42698-42718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38878244

RESUMO

This study assesses the viability of recycled plastic-based triboelectric nanogenerators (TENGs) for sustainable energy harvesting in India and Singapore, concurrently examining plastic waste management. Using material flow analysis and life cycle assessment, the findings revealed that in Singapore, waste-to-energy incineration has a lower environmental impact than landfilling and mechanical recycling, attributed to natural gas usage. In India, recycling offsets impacts from incineration and landfilling, contributing to a lower net environmental impact. Economic performance of a TENG module from PET recyclates showed a 20% carbon footprint reduction when scaling up from lab to industrial "freeze-drying" processes. Key challenges in TENG manufacturing processes are also assessed for future development. This research highlights the potential of recycled plastic-based TENGs in sustainable energy and waste management.


Assuntos
Plásticos , Reciclagem , Gerenciamento de Resíduos , Índia , Singapura , Gerenciamento de Resíduos/métodos , Incineração
4.
Mar Pollut Bull ; 191: 114950, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146548

RESUMO

This article describes a novel Cellular Automata (CA) model to predict the transportation of buoyant marine plastics. The proposed CA model provides a simpler and more affordable approach to a field where the computationally intensive Lagrangian particle-tracking models dominate. The transportation of marine plastics was investigated using well-defined, probabilistic rules governing the advection and diffusion processes. The CA model was applied to evaluate the impact of two input scenarios, namely a "population" and a "river" scenario. Of the sub-tropical gyres, a high percentage of buoyant plastics were found in the Indian gyre (population: 5.0 %; river: 5.5 %) and North Pacific gyre (population: 5.5 %; river: 7 %). These findings show good agreement with previously published results from particle-tracking models. The CA model could be a useful rapid-scenario assessment tool for the estimation marine plastic pollution prior to more in-depth studies on effective mitigation measures to, for example, reduce plastics waste.


Assuntos
Monitoramento Ambiental , Plásticos , Monitoramento Ambiental/métodos , Autômato Celular , Poluição Ambiental , Resíduos/análise , Oceanos e Mares
5.
Polymers (Basel) ; 15(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765545

RESUMO

In this study, we compare the reinforcing efficiency of pineapple leaf fiber (PALF) and cultivated flax fiber in unidirectional poly(butylene succinate) composites. Flax, known for robust mechanical properties, is contrasted with PALF, a less studied but potentially sustainable alternative. Short fibers (6 mm) were incorporated at 10 and 20% wt. levels. After two-roll mill mixing, uniaxially aligned prepreg sheets were compression molded into composites. At 10 wt.%, PALF and flax exhibited virtually the same stress-strain curve. Interestingly, PALF excelled at 20 wt.%, defying its inherently lower tensile properties compared to flax. PALF/PBS reached 70.7 MPa flexural strength, 2.0 GPa flexural modulus, and 107.3 °C heat distortion temperature. Comparable values for flax/PBS were 57.8 MPa, 1.7 GPa, and 103.7 °C. X-ray pole figures indicated similar matrix orientations in both composites. An analysis of extracted fibers revealed differences in breakage behavior. This study highlights the potential of PALF as a sustainable reinforcement option. Encouraging the use of PALF in high-performance bio-composites aligns with environmental goals.

6.
Int J Biol Macromol ; 246: 125622, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392925

RESUMO

Enzymatic hydrolysis is a promising approach for protein and food processing. However, the efficiency of this approach is constrained by the self-hydrolysis, self-agglomeration of free enzymes and the limited applicability resulted from enzymes' selectivityt. Here, novel organic-inorganic hybrid nanoflowers (AY-10@AXH-HNFs) were prepared by coordinating Cu2+ with both endopeptidase of PROTIN SD-AY10 and exopeptidase of Prote AXH. The results indicate that the AY-10@AXH-HNFs exhibited 4.1 and 9.6 times higher catalytic activity than free Prote AXH and PROTIN SD-AY10, respectively, for the enzymatic hydrolysis of N-benzoyl-L-arginine ethyl ester (BAEE). The kinetic parameters of Km, Vmax and Kcat/Km by AY-10@AXH-HNFs were determined to be 0.6 mg/mL, 6.8 mL·min/mg and 6.1 mL/(min·mg), respectively, surpassing the values obtained from free endopeptidase and exopeptidase. Furthermore, the ability of AY-10@AXH-HNFs to retain 41 % of their initial catalytic activity after undergoing 5 cycles of repeated use confirmed their stability and reusability. This study introduces a novel approach of co-immobilizing endopeptidase and exopeptidase on nanoflowers, resulting in significantly enhanced stability and reusability of the protease in catalytic applications.


Assuntos
Nanoestruturas , Hidrólise , Endopeptidases , Exopeptidases , Catálise , Enzimas Imobilizadas/metabolismo
7.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299606

RESUMO

In this work, the effect of cellulose nanofiber (CNF) on the mechanical properties of long pineapple leaf fiber (PALF)-reinforced epoxy composites was investigated. The content of PALF was fixed at 20 wt.% and the CNF content was varied at 1, 3, and 5 wt.% of the epoxy matrix. The composites were prepared by hand lay-up method. Comparison was conducted between CNF-, PALF- and CNF-PALF-reinforced composites. It was found that the introduction of these small amounts of CNF into epoxy resin caused very small effects on flexural modulus and strength of neat epoxy. However, impact strength of epoxy with 1 wt.% CNF increased to about 115% that of neat epoxy, and, as the content of CNF increased to 3 and 5 wt.%, the impact strength decreased to that of neat epoxy. Observation of the fractured surface under electron microscope revealed the change in failure mechanism from a smooth surface to a much rougher surface. For epoxy containing 20 wt.% PALF, both flexural modulus and strength increased significantly to about 300% and 240% that of neat epoxy. The composite impact strength increased to about 700% that of the neat epoxy. For hybrid systems containing both CNF and PALF, there were few changes observed in both flexural modulus and strength compared to the PALF epoxy system. However, much improvement in impact strength was obtained. By using epoxy containing 1 wt.% CNF as the matrix, the impact strength increased to about 220% that of 20 wt.% PALF epoxy or 1520% that of neat epoxy. It thus could be deduced that the spectacular improvement in impact strength was due to the synergistic effect of CNF and PALF. The failure mechanism leading to the improvement in impact strength will be discussed.

8.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447540

RESUMO

Pineapple materials sourced from agricultural waste have been employed to process novel bio-degradable rigid composite foams. The matrix for the foam consisted of starch extracted from pineapple stem, known for its high amylose content, while the filler comprised non-fibrous cellulosic materials sourced from pineapple leaf. In contrast to traditional methods that involve preparing a batter, this study adopted a unique approach where the starch gel containing glycerol were first formed using a household microwave oven, followed by blending the filler into the gel using a two-roll mill. The resulting mixture was then foamed at 160 °C using a compression molding machine. The foams displayed densities ranging from 0.43-0.51 g/cm3 and exhibited a highly amorphous structure. Notably, the foams demonstrated an equilibrium moisture content of approximately 8-10% and the ability to absorb 150-200% of their own weight without disintegration. Flexural strengths ranged from 1.5-4.5 MPa, varying with the filler and glycerol contents. Biodegradability tests using a soil burial method revealed complete disintegration of the foam into particles measuring 1 mm or smaller within 15 days. Moreover, to showcase practical applications, an environmentally friendly single-use foam tray was fabricated. This novel method, involving gel formation followed by filler blending, sets it apart from previous works. The findings highlight the potential of pineapple waste materials for producing sustainable bio-degradable foams with desirable properties and contribute to the field of sustainable materials.

9.
Data Brief ; 43: 108321, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35677625

RESUMO

This data article reports the level of expression of messenger RNA (mRNA) obtained from a set of 18 skeletal muscle samples using Affymetrix Genechips Exon arrays. Data were obtained from Gastrocnemius muscle of C57BL6 male mice at 3 distinct age groups, 2, 11 and 25 months old representing young, mature adult and aged groups. The data submitted to GEO constitute a large dataset of 15,300 mRNA levels. The data include eighteen .CEL files obtained after scanning mouse exon arrays and one .xls file obtained after processing with Genespring GX 14.9. Three distinct files containing affymetrix data processed using Genespring and analyzed for differences between stages 2 per 2 are provided as supplementary data.

10.
ACS Appl Mater Interfaces ; 14(28): 31973-31985, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35792904

RESUMO

This article reports a novel and rational approach to convert waste cigarette filters (CFs), one of the largest sources of ocean pollution, into high-performance triboelectric nanogenerators (TENGs) and efficient CO2-capturing adsorbents. CFs are plasticized cellulose acetate, which take several years to degrade. To revalorize these fibers, selective amine surface functionalization is performed (10PAL-20T-CFs). For the proof of concept, when the modified fibers are employed in a TENG, it could generate an output voltage (96.63 V) and current (9.37 µA) that are, respectively, 43 and 8 times higher than those obtained employing the pristine CFs for the nanogenerator. The proposed TENG displays an instantaneous peak power of 3.75 mW, which is higher than that of many recently reported TENGs made from cellulose materials. Moreover, the TENG displayed outstanding durability to humidity and high-performance stability when it is subjected to cyclic loading (i.e., 12,000 cycles of loading-unloading). A 9 cm2 TENG could effectively light up 100 or more colored light-emitting diodes when it is manually pressed. Finally, the modified filter fibers show an excellent CO2 adsorption capacity of 1.93 mmol/g, which is 9.2 times higher than that obtained using the pristine fibers. These results demonstrate that hazardous wastes such as CFs can be upcycled into valuable resources.

11.
Carbohydr Polym ; 278: 118974, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973788

RESUMO

Cross-linking is often performed to overcome the weak mechanical properties of native polymer films in order to expand their functional properties and applications. While this approach offers enhanced strength to the film, the film also suffers from low flexibility, low toughness and high brittleness. However, in view of the growing demand for strong and tough transparent thin films, this article reported our study to develop films made from cellulose nanofiber (CNF) via tailoring the interfacial bonding interactions through the application of glycerol (Gly) and glutaraldehyde (GA), which functioned as a plasticizer and cross-linking agent, respectively. Among the prepared films, the 10GA-8Gly-CNF film exhibited the best results with regard to the enhancement in the tensile strength (21.1%), Young's modulus (10.6%), elongation at break (100%) and toughness (32.7%), as compared to the native CNF film. Importantly, treating the surface of the film to radiofrequency oxygen plasma endowed the film with antifogging property, without compromising the optical clarity.


Assuntos
Celulose/química , Reagentes de Ligações Cruzadas/química , Nanofibras/química , Módulo de Elasticidade , Plastificantes , Resistência à Tração
12.
Environ Sci Pollut Res Int ; 29(34): 51234-51268, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35604599

RESUMO

This study explores the implications of plastic waste and recycling management on recyclates for manufacturing clean-energy harvesting devices. The focus is on a comparative analysis of using recycled polyethylene terephthalate (PET) for triboelectric nanogenerator (TENG) production, in two densely populated Asian countries of large economies, namely Singapore and India. Of the total 930,000 tonnes of plastic waste generated in Singapore in 2019, only 4% were recycled and the rest were incinerated. In comparison, India yielded 8.6 million tonnes of plastic waste and 70% were recycled. Both countries have strict recycling goals and have instituted different waste and recycling management regulations. The findings show that the waste policies and legislations, responsibilities and heterogeneity in collection systems and infrastructure of the respective country are the pivotal attributes to successful recycling. Challenges to recycle plastic include segregation, adulterants and macromolecular structure degradation which could influence the recyclate properties and pose challenges for manufacturing products. A model was developed to evaluate the economic value and mechanical potential of PET recyclate. The model predicted a 30% loss of material performance and a 65% loss of economic value after the first recycling cycle. The economic value depreciates to zero with decreasing mechanical performance of plastic after multiple recycling cycles. For understanding how TENG technology could be incorporated into the circular economy, a model has estimated about 20 million and 7300 billion pieces of aerogel mats can be manufactured from the PET bottles disposed in Singapore and India, respectively which were sufficient to produce small-scale TENG devices for all peoples in both countries.


Assuntos
Plásticos , Polietilenotereftalatos , Reciclagem , Gerenciamento de Resíduos , Índia , Singapura
13.
J Med Imaging (Bellingham) ; 8(5): 052106, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34084871

RESUMO

Purpose: To investigate the influence of radiographic contrast agent on the accuracy of the photon counts arising from the emission of gamma rays of radionuclides in single-photon emission computed tomography (SPECT), when dual-energy x-ray CT (DXCT) is employed for providing object/energy-specific attenuation coefficient correction in SPECT. Approach: Computer simulation was performed for three transmission CT approaches, namely, the conventional (single kVp, unimodal spectrum) x-ray CT, DXCT (single kVp, bimodal spectrum) with basis material decomposition (BMD), and DXCT with BMD followed by basis material coefficients transformation (BMT), to study the effects of these approaches on the accuracy of the photon counts from the SPECT image of a thorax-like phantom. Results: All three CT approaches revealed that the error in the counts was both photon energy and iodine concentration-dependent. Differences in the trending increase/decrease in the errors with the respective increase in iodine concentration and photon energy were observed among the three CT approaches. Of the three, the BMT/SPECT approach resulted in the smallest error in the concentration of radionuclides measured, especially in the contrast agent-filled region, and the optimal level depended on the iodine concentration and photon energy. Conclusion: With a judicious choice of the basis materials and photon energy, it may be possible to take advantage of the benefits of the BMT method to mitigate the accuracy problem in DXCT for quantitative SPECT imaging.

14.
Chemosphere ; 285: 131398, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34252813

RESUMO

This paper reviewed the recent progress on a number of important natural/biomass materials (fibers, leaves, woods, nutshells, algae, and sands, etc.) for the separation of oily water mixture/emulsions. Experiments were conducted with desert pristine sand samples, which were collected, sieved, characterized and tested for the separation of two surfactant-stabilized oil in water (O/W) emulsions in a simple cross-flow sand bed filter under the simulated natural gravity. The wettability of the sand samples was checked through contact angle measurements. The morphology of sands was characterized with SEM/EDX and FTIR. Experimental results revealed that natural sand filtration is a promising technology with the characteristics of: 1) a surface of superhydrophilicity and underwater superoleophobicity; 2) sands bed achieved separation efficiency and flux comparable or higher than commercial microfiltration membranes under natural gravity conditions, and 3) the separation efficiency and flux of the sand bed are relatively stable with respect to the operation parameters. This technology is technically feasible, low-cost, and environmental-benign and can play an important role in the practical applications.


Assuntos
Filtração , Óleos , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Água
15.
Nanomaterials (Basel) ; 11(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066661

RESUMO

The development of armour systems with higher ballistic resistance and light weight has gained considerable attention as an increasing number of countries are recognising the need to build up advanced self-defence system to deter potential military conflicts and threats. Graphene is a two dimensional one-atom thick nanomaterial which possesses excellent tensile strength (130 GPa) and specific penetration energy (10 times higher than steel). It is also lightweight, tough and stiff and is expected to replace the current aramid fibre-based polymer composites. Currently, insights derived from the study of the nacre (natural armour system) are finding applications on the development of artificial nacre structures using graphene-based materials that can achieve high toughness and energy dissipation. The aim of this review is to discuss the potential of graphene-based nanomaterials with regard to the penetration energy, toughness and ballistic limit for personal body armour applications. This review addresses the cutting-edge research in the ballistic performance of graphene-based materials through theoretical, experimentation as well as simulations. The influence of fabrication techniques and interfacial interactions of graphene-based bioinspired polymer composites for ballistic application are also discussed. This review also covers the artificial nacre which is shown to exhibit superior mechanical and toughness behaviours.

16.
Proc Inst Mech Eng H ; 235(3): 291-299, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33243079

RESUMO

The aim of this study was to assess whether the mechanical properties of mitral valve chordae tendineae are sensitive to being cross-linked under load. A total 64 chordae were extracted from eight porcine hearts. Two chordae (posterior basal) from each heart were subjected to uniaxial ramp testing and six chordae (two strut, two anterior basal and two posterior basal) were subjected to dynamic mechanical analysis over frequencies between 0.5 and 10 Hz. Chordae were either cross-linked in tension or cross-linked in the absence of loading. Chordae cross-linked under load transitioned from high to low extension at a lower strain than cross-linked unloaded chordae (0.07 cf. 0.22), with greater pre-transitional (30.8 MPa cf. 5.78 MPa) and post-transitional (139 MPa cf. 74.1 MPa) moduli. The mean storage modulus of anterior strut chordae ranged from 48 to 54 MPa for cross-linked unloaded chordae, as compared to 53-61 MPa cross-linked loaded chordae. The mean loss modulus of anterior strut chordae ranged from 2.3 to 2.9 MPa for cross-linked unloaded chordae, as compared to 3.8-4.8 MPa cross-linked loaded chordae. The elastic and viscoelastic properties of chordae following glutaraldehyde cross-linking are dependent on the inclusion/exclusion of loading during the cross-linking process; with loading increasing the magnitude of the material properties measured.


Assuntos
Cordas Tendinosas , Valva Mitral , Animais , Fenômenos Biomecânicos , Glutaral , Testes Mecânicos , Suínos
17.
Sci Data ; 5: 180140, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30040080

RESUMO

Connective tissues such as tendon, ligament and skin are biological fibre composites comprising collagen fibrils reinforcing the weak proteoglycan-rich ground substance in extracellular matrix (ECM). One of the hallmarks of ageing of connective tissues is the progressive and irreversible change in the tissue mechanical properties; this is often attributed to the underlying changes to the collagen fibril structure. This dataset represents a comprehensive screen of the mechanical properties and collagen fibril structure of tendon from the tails of young to old (i.e. 1.6-35.3 month-old) C57BL6/B mice. The mechanical portion consists of the load-displacement data, as well as the derived tensile properties; the structure data consists of transmission electron micrographs of collagen fibril cross section, as well as the derived cross-sectional parameters. This dataset will allow other researchers to develop and demonstrate the utility of innovative multiscale models and approaches of the extra-cellular and physiological events of ageing of current interest to ageing research, by reducing the current reliance on conducting new mammalian experiments.


Assuntos
Envelhecimento , Colágeno/química , Tendões/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Animais , Colágeno/metabolismo , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tendões/fisiologia
19.
Biochim Biophys Acta ; 1722(2): 183-8, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15716023

RESUMO

Analysis of the diameters of collagen fibrils provides insight into the structure and physical processes occurring in the tissue. This paper describes a method for analyzing the frequency distribution of the diameters of collagen fibrils from small-angle X-ray scattering (SAXS) patterns. Frequency values of fibril diameters were input into a mathematical model of the form factor to calculate the equatorial intensity which best fits the experimentally derived data from SAXS patterns. A minimization algorithm utilizing simulated annealing (SA) was used in the fitting procedure. The SA algorithm allowed for random sampling of the frequency values, and was run iteratively to build up an optimized frequency distribution of fibril diameters. Results were obtained for collagen samples from sheep spine ligaments. The mean fibril diameter value obtained from this data-fitting method was 73 nm+/-20 nm (S.D.). From scanning transmission electron microscopy, the mean diameter was found to be 69 nm+/-14 nm (S.D.). The good agreement between the two methods demonstrates the reliability of the SAXS method for the tissue examined. The non-destructive nature of this technique, as well as its statistical robusticity and capacity for large sampling, means that this method is both quick and effective.


Assuntos
Colágeno/ultraestrutura , Tecido Conjuntivo/química , Tecido Conjuntivo/ultraestrutura , Microfibrilas/ultraestrutura , Algoritmos , Animais , Microscopia Eletrônica de Transmissão e Varredura/métodos , Ovinos , Coluna Vertebral , Difração de Raios X/métodos
20.
J Funct Biomater ; 6(3): 901-16, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26378587

RESUMO

The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material's toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA