Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628522

RESUMO

The sole currently approved malaria vaccine targets the circumsporozoite protein-the protein that densely coats the surface of sporozoites, the parasite stage deposited in the skin of the mammalian host by infected mosquitoes. However, this vaccine only confers moderate protection against clinical diseases in children, impelling a continuous search for novel candidates. In this work, we studied the importance of the membrane-associated erythrocyte binding-like protein (MAEBL) for infection by Plasmodium sporozoites. Using transgenic parasites and live imaging in mice, we show that the absence of MAEBL reduces Plasmodium berghei hemolymph sporozoite infectivity to mice. Moreover, we found that maebl knockout (maebl-) sporozoites display reduced adhesion, including to cultured hepatocytes, which could contribute to the defects in multiple biological processes, such as in gliding motility, hepatocyte wounding, and invasion. The maebl- defective phenotypes in mosquito salivary gland and liver infection were reverted by genetic complementation. Using a parasite line expressing a C-terminal myc-tagged MAEBL, we found that MAEBL levels peak in midgut and hemolymph parasites but drop after sporozoite entry into the salivary glands, where the labeling was found to be heterogeneous among sporozoites. MAEBL was found associated, not only with micronemes, but also with the surface of mature sporozoites. Overall, our data provide further insight into the role of MAEBL in sporozoite infectivity and may contribute to the design of future immune interventions.


Assuntos
Plasmodium berghei , Proteínas de Protozoários , Receptores de Superfície Celular , Animais , Culicidae , Eritrócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Esporozoítos/metabolismo
2.
Front Immunol ; 13: 868305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669785

RESUMO

Malaria is a major public health concern, as a highly effective human vaccine remains elusive. The efficacy of a subunit vaccine targeting the most abundant protein of the sporozoite surface, the circumsporozoite protein (CSP) has been hindered by difficulties in generating an effective humoral response in both quantity and quality. Using the rodent Plasmodium yoelii model we report here that immunization with CSP adjuvanted with 5'ppp-dsRNA, a RIG-I agonist, confers early and long-lasting sterile protection in mice against stringent sporozoite and mosquito bite challenges. The immunization induced high levels of antibodies, which were functional in targeting and killing the sporozoites and were sustained over time through the accumulation of long-lived plasma cells in the bone marrow. Moreover, 5'ppp-dsRNA-adjuvanted immunization with the CSP of P. falciparum was also significantly protective against challenges using a transgenic PfCSP-expressing P. yoelii parasite. Conversely, using the TLR3 agonist poly(A:U) as adjuvant resulted in a formulation that despite inducing high antibody levels was unable to generate equally functional antibodies and was, consequently, less protective. In conclusion, we demonstrate that using 5'ppp-dsRNA as an adjuvant to vaccines targeting CSP induces effective anti-Plasmodium humoral immunity.


Assuntos
Vacinas Antimaláricas , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antiprotozoários , Imunização , Camundongos , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos
3.
Sci Rep ; 8(1): 15101, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305687

RESUMO

Plasmodium sporozoites deposited in the skin following a mosquito bite must migrate and invade blood vessels to complete their development in the liver. Once in the bloodstream, sporozoites arrest in the liver sinusoids, but the molecular determinants that mediate this specific homing are not yet genetically defined. Here we investigate the involvement of the thrombospondin-related sporozoite protein (TRSP) in this process using knockout Plasmodium berghei parasites and in vivo bioluminescence imaging in mice. Resorting to a homing assay, trsp knockout sporozoites were found to arrest in the liver similar to control parasites. Moreover, we found no defects in the establishment of infection in mice following inoculation of trsp knockout sporozoites via intravenous and cutaneous injection or mosquito bite. Accordingly, mutant sporozoites were also able to successfully invade hepatocytes in vitro. Altogether, these results suggest TRSP may have a redundant role in the completion of the pre-erythrocytic phase of the malaria parasite. Nonetheless, identifying molecules with paramount roles in this phase could aid in the search for new antigens needed for the design of a protective vaccine against malaria.


Assuntos
Eritrócitos/parasitologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Trombospondinas/metabolismo , Animais , Culicidae/parasitologia , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/parasitologia , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Fígado/parasitologia , Camundongos Endogâmicos C57BL , Plasmodium berghei/patogenicidade , Esporozoítos/metabolismo , Esporozoítos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA