Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inorg Chem ; 63(5): 2322-2326, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38262914

RESUMO

Crystallization of the reaction mixture of 2-amino-4,6-diazido-1,3,5-triazine and excess tert-butylamine results in the isolation of tert-butylammonium N,N-[1'H-(1,5'-bitetrazol)-5-yl]cyanamidate, suggesting a complex decyclization/cyclization rearrangement involving breakage of the six-membered aromatic ring and the formation of two new five-membered azole rings mediated by deprotonation of the precursor by the amine. The addition of tert-butylamine to 2-amino-4,6-diazido-1,3,5-triazine gives spectroscopic indication of thermodynamically unfavorable reactivity in low-dielectric solvents, and high-level quantum chemical computations also suggest its formation to be unfavorable. A computed interconversion pathway describes the likely reaction mechanism and supports the general thermodynamic unfavorability of the reaction and the requirement for a high-dielectric environment to template formation of the ionic product and its trapping by crystallization.

2.
Phys Chem Chem Phys ; 26(24): 17265-17273, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856369

RESUMO

A new strategy is presented for computing anharmonic partition functions for the motion of adsorbates relative to a catalytic surface. Importance sampling is compared with conventional Monte Carlo. The importance sampling is significantly more efficient. This new approach is applied to CH3* on Ni(111) as a test case. The motion of methyl relative to the nickel surface is found to be anharmonic, with significantly higher entropy compared to the standard harmonic oscillator model. The new method is freely available as part of the Minima-Preserving Neural Network within the ADTHERM package.

3.
J Phys Chem A ; 127(6): 1499-1511, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36745864

RESUMO

A new detailed chemical kinetic mechanism is presented for small fluorinated hydrocarbons. Ab initio electronic structure theory is used to provide heats of formation with subchemical accuracy. The ANL0 method is extended to include fluorine. The resulting heats of formation at 0 K are in excellent agreement with 36 benchmark species in the Active Thermochemical Tables, with a mean error of µ = -0.02 kJ/mol and a standard deviation of σ = 0.91 kJ/mol. The thermophysical properties for 92 small-molecule H/C/O/F species are computed. The rate coefficients for 40+ H-abstraction reactions involving H, O, F, OH, OF, HO2, and various methyl radicals with CH4, CH3F, CH2F2, CHF3, CH2O, and CHFO are discussed. The computed rate constants are in excellent agreement with the available literature. Additionally, 30+ rate constants are provided for F abstraction, which are several orders of magnitude smaller than H abstraction. The thermophysical properties and rate constants are provided in a mechanism. This mechanism is the first in a series of theory-based investigations into the thermal destruction of per- and polyfluorinated species.

4.
Angew Chem Int Ed Engl ; 62(39): e202306514, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37505449

RESUMO

The study presents an ab-initio based framework for the automated construction of microkinetic mechanisms considering correlated uncertainties in all energetic parameters and estimation routines. 2000 unique microkinetic models were generated within the uncertainty space of the BEEF-vdW functional for the oxidation reactions of representative exhaust gas emissions from stoichiometric combustion engines over Pt(111) and compared to experiments through multiscale modeling. The ensemble of simulations stresses the importance of considering uncertainties. Within this set of first-principles-based models, it is possible to identify a microkinetic mechanism that agrees with experimental data. This mechanism can be traced back to a single exchange-correlation functional, and it suggests that Pt(111) could be the active site for the oxidation of light hydrocarbons. The study provides a universal framework for the automated construction of reaction mechanisms with correlated uncertainty quantification, enabling a DFT-constrained microkinetic model optimization for other heterogeneously catalyzed systems.

5.
J Chem Inf Model ; 62(20): 4906-4915, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36222558

RESUMO

The Reaction Mechanism Generator (RMG) database for chemical property prediction is presented. The RMG database consists of curated datasets and estimators for accurately predicting the parameters necessary for constructing a wide variety of chemical kinetic mechanisms. These datasets and estimators are mostly published and enable prediction of thermodynamics, kinetics, solvation effects, and transport properties. For thermochemistry prediction, the RMG database contains 45 libraries of thermochemical parameters with a combination of 4564 entries and a group additivity scheme with 9 types of corrections including radical, polycyclic, and surface absorption corrections with 1580 total curated groups and parameters for a graph convolutional neural network trained using transfer learning from a set of >130 000 DFT calculations to 10 000 high-quality values. Correction schemes for solvent-solute effects, important for thermochemistry in the liquid phase, are available. They include tabulated values for 195 pure solvents and 152 common solutes and a group additivity scheme for predicting the properties of arbitrary solutes. For kinetics estimation, the database contains 92 libraries of kinetic parameters containing a combined 21 000 reactions and contains rate rule schemes for 87 reaction classes trained on 8655 curated training reactions. Additional libraries and estimators are available for transport properties. All of this information is easily accessible through the graphical user interface at https://rmg.mit.edu. Bulk or on-the-fly use can be facilitated by interfacing directly with the RMG Python package which can be installed from Anaconda. The RMG database provides kineticists with easy access to estimates of the many parameters they need to model and analyze kinetic systems. This helps to speed up and facilitate kinetic analysis by enabling easy hypothesis testing on pathways, by providing parameters for model construction, and by providing checks on kinetic parameters from other sources.


Assuntos
Modelos Químicos , Cinética , Termodinâmica , Bases de Dados Factuais , Solventes
6.
J Theor Biol ; 528: 110839, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314731

RESUMO

The fundamental models of epidemiology describe the progression of an infectious disease through a population using compartmentalized differential equations, but typically do not incorporate population-level heterogeneity in infection susceptibility. Here we combine a generalized analytical framework of contagion with computational models of epidemic dynamics to show that variation strongly influences the rate of infection, while the infection process simultaneously sculpts the susceptibility distribution. These joint dynamics influence the force of infection and are, in turn, influenced by the shape of the initial variability. We find that certain susceptibility distributions (the exponential and the gamma) are unchanged through the course of the outbreak, and lead naturally to power-law behavior in the force of infection; other distributions are often sculpted towards these "eigen-distributions" through the process of contagion. The power-law behavior fundamentally alters predictions of the long-term infection rate, and suggests that first-order epidemic models that are parameterized in the exponential-like phase may systematically and significantly over-estimate the final severity of the outbreak. In summary, our study suggests the need to examine the shape of susceptibility in natural populations as part of efforts to improve prediction models and to prioritize interventions that leverage heterogeneity to mitigate against spread.


Assuntos
Epidemias , Surtos de Doenças , Modelos Biológicos
7.
J Chem Inf Model ; 61(6): 2686-2696, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048230

RESUMO

In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters. Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. Most notably, RMG can now generate heterogeneous catalysis models in addition to the previously available gas- and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release includes parallelization for faster model generation and a new molecule isomorphism approach to improve computational performance. RMG has also been updated to use Python 3, ensuring compatibility with the latest cheminformatics and machine learning packages. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.


Assuntos
Quimioinformática , Software , Cinética , Aprendizado de Máquina
8.
J Phys Chem A ; 125(36): 8064-8073, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34469163

RESUMO

Diastereomers have historically been ignored when building kinetic mechanisms for combustion. Low-temperature oxidation kinetics, which continues to gain interest in both combustion and atmospheric communities, may be affected by the inclusion of diastereomers in radical chain-branching pathways. In this work, key intermediates and transition states lacking stereochemical specification in an existing diethyl ether low-temperature oxidation mechanism were replaced with their diastereomeric counterparts. Rate coefficients for reactions involving diastereomers were computed with ab initio transition state theory master equation calculations. The presence of diastereomers increased rate coefficients by factors of 1.2-1.6 across various temperatures and pressures. Ignition delay simulations incorporating these revised rate coefficients indicate that the diastereomers enhanced the overall reactivity of the mechanism by almost 15% and increased the peak ketohydroperoxide concentration by 30% in the negative temperature coefficient region at combustion-relevant pressures. These results provide an illustrative indication of the important role of stereomeric effects in oxidation kinetics.

9.
J Phys Chem A ; 124(5): 1038-1046, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31927954

RESUMO

An application of atomistic machine learning for variational transition state theory is presented. The rate constants for various radical-radical reactions are computed using variable reaction coordinate transition state theory. In order to simplify the calculation process, artificial neural networks are trained on a structured grid of potential energy data. The resulting surrogate potential energy surface is used in classical phase space representations to describe the interaction between two radical species in the gas phase. When the artificial neural network is trained to potential energy alone, the number of explicit electronic structure energy calculations required to compute a rate constant decreases by at least a factor of 4. When forces are included in the training data, the reduction is more dramatic-at least an order of magnitude.

10.
J Phys Chem A ; 124(38): 7665-7677, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32786967

RESUMO

Azobis tetrazole and triazole derivatives containing long catenated nitrogen atom chains are of great interest as promising green energetic materials. However, these compounds often exhibit poor thermal stability and high impact sensitivity. Kinetics and mechanism of the primary decomposition reactions are directly related to these issues. In the present work, with the aid of highly accurate CCSD(T)-F12 quantum chemical calculations, we obtained reliable bond dissociation energies and activation barriers of thermolysis reactions for a number of N-rich heterocycles. We studied all existing 1,1'-azobistetrazoles containing an N10 chain, their counterparts with the 5,5'-bridging pattern, and the species with hydrazo- and azoxy-bridges, which are often present energetic moieties. The N8-containing azobistriazole was considered as well. For all compounds studied, the radical decomposition channel was found to be kinetically unfavorable. All species decompose via the ring-opening reaction yielding a transient azide (or diazo) intermediate followed by the N2 elimination. In the case of azobistetrazole derivatives, the calculated effective activation barriers of decomposition are ∼26-33 kcal mol-1, which is notably lower than that of tetrazole (∼40 kcal mol-1). This fact agrees well with the low thermal stability and high impact sensitivities of the former species. The activation barriers of the N2 elimination were found to be almost the same for the azobis compounds and the parent tetrazole, and the effective decomposition barrier is determined by the thermodynamics of the tetrazole-azide rearrangement. In comparison with 1,1'-azobistetrazole, the hydrazo-bridged compound is more stable kinetically due to the lack of pi-conjugation in the azide intermediate. In turn, the azoxy-bridged compounds are entirely unstable due to tremendous azide stabilization by the hydrogen bond formation. In general, the 5,5'-bridged species are more thermally stable than their 1,1'-counterparts due to a much higher barrier of the N2 elimination. Apart from this, the highly accurate gas-phase formation enthalpies were calculated at the W1-F12 level of theory for all species studied.

11.
J Phys Chem A ; 123(45): 9818-9827, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633937

RESUMO

Highly accurate theoretical values of formation enthalpies and bond energies are crucial for reliable predictions of performance and detonation-related phenomena of energetic materials (EM). However, high-level ab initio calculations even for medium-sized important EMs still remain a demanding challenge. In the present work, we studied in detail the gas-phase thermochemistry of novel high-energy polynitro derivatives of 5/6/5 structural frameworks comprised of fused 1,2,3,4,-tetrazine and two 1,2,4-triazole or pyrazole rings. To this end, we proposed and benchmarked a "bottom-up" approach. First, highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were utilized for smaller species. In turn, for medium-sized species (up to 24 non-H atoms), these values were complemented with the enthalpies of isodesmic reactions calculated using the recently proposed domain-based local pair natural orbital (DLPNO) modifications of coupled cluster techniques. The benchmarks on a number of atomization energies and enthalpies of isodesmic reactions reveal that the DLPNO-CCSD(T)/aVQZ approach does not deteriorate the quality of the W1-F12 and W2-F12 procedures and exhibits overall accuracy close to "chemical" (∼1 kcal mol-1). We obtained a set of accurate and mutually consistent gas-phase formation enthalpies for 12 energetic heterocyclic species. Among them, the gas-phase formation enthalpy of 1,2,9,10-tetranitrodipyrazolo[1,5-d:5',1'-f][1,2,3,4]tetrazine, a novel promising EM, turned out to be ΔfHgas0 = 214.5 kcal mol-1, which is ∼12 kcal mol-1 higher than the best theoretical estimates available in the literature. The formation enthalpy of another novel EM, a fused tricyclic 1,2,3,4-tetrazine with two nitro-1,2,4-triazole moieties, was predicted to be ΔfHgas0 = 213.5 kcal mol-1, which is also ∼4 kcal mol-1 higher than the reported value. Apart from this, we considered the thermodynamics of radical reactions (viz., C-NO2 bond scission) and the thermochemistry of the corresponding radicals. The difference between DLPNO-CCSD(T)/aVQZ and CCSD(T)-F12/VTZ-F12 benchmark values did not exceed 1 kcal mol-1. In a more general sense, the use of DLPNO-CCSD(T) in conjunction with the bottom-up approach is promising for quantitative thermochemical calculations of energetic materials composed of species up to several dozens of CHNO atoms.

12.
J Phys Chem A ; 123(23): 4883-4890, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-30920217

RESUMO

Highly accurate theoretical values of bond energies and activation barriers of primary decomposition reactions are crucial for reliable predictions of thermal decomposition and detonation-related phenomena of energetic materials (EM). However, due to the prohibitive computational cost, high-level ab initio calculations had been impractical for a large number of important EMs, including, e.g., hexanitrohexaazaisowurtzitane (CL-20). In the present work, we obtained accurate bond dissociation energies and the activation barriers for primary decomposition reactions for a series of novel promising caged polynitroamino and polynitro EMs, viz., CL-20, TEX, octanitrocubane (ONC), and hexanitro derivatives of adamantane, using the recently proposed domain-localized pair natural orbitals (DLPNO) modifications of coupled cluster techniques. DLPNO-CCSD(T) allows for routine quadruple-ζ basis set quality coupled cluster calculations for the species comprised of ∼30 non-H atoms. The benchmarks on a number of simpler congeners of CL-20 and ONC revealed that the DLPNO approach does not deteriorate the quality of the quadruple-ζ coupled cluster procedure. With the aid of this technique, the full set of gas-phase primary decomposition reactions for all 9 conformers of CL-20 was considered. For all species studied, C-NO2 or N-NO2 radical decomposition channels dominate over molecular counterparts. The best theoretical results reported in the literature so far, viz., density functional theory energies of nitro group radical elimination in CL-20 and ONC, underestimate the value by ∼10 kcal mol-1. We also present reliable and accurate gas-phase formation enthalpies for CL-20, ONC, and related species. In a more general sense, these results offer a new level of predictive computational kinetics for polynitro-caged energetic materials.

13.
J Phys Chem A ; 123(28): 5866-5876, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31192602

RESUMO

The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700-1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master Equation methods were used to predict the decomposition kinetics. RRKM/ME parameters were optimized against the experimental data to provide an accurate prediction over a broader range of conditions. The initial decomposition i-C3H7ONO2 ⇌ i-C3H7O + NO2 has a high-pressure limit rate coefficient of 5.70 × 1022T-1.80 exp[-21287.5/T] s-1. A new chemical kinetic mechanism was developed to model the chemistry after the initial dissociation. A new shock tube module was developed for Cantera, which allows for arbitrarily large mechanisms in the simulation of laser schlieren experiments. The present work is in good agreement with previous experimental studies.

14.
Phys Chem Chem Phys ; 20(46): 29285-29298, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30430162

RESUMO

The thermal stability of energetic materials, being of the utmost importance for safety issues, is often considered in terms of kinetics, e.g., the Arrhenius parameters of the decomposition rate constant. The latter, in turn, are commonly determined using conventional thermoanalytical procedures with the use of simple Kissinger or Ozawa methods for kinetic data processing. However, thermal decomposition of energetic materials typically occurs via numerous exo- and endothermal processes including fast parallel reactions, phase transitions, autocatalysis, etc. This leads to numerous drawbacks of simple approaches. In this paper, we proposed a new methodology for characterization of the thermochemistry and thermal stability of melt-cast energetic materials, which is comprised of a complementary set of experimental and theoretical techniques in conjunction with a suitable kinetic model. With the aid of the proposed methodology, we studied in detail a novel green oxidizer, tetranitroacetimidic acid (TNAA). The experimental mass loss kinetics in the melt was perfectly fitted with a model comprised of zero-order reaction (sublimation or evaporation) and first-order thermal decomposition of TNAA with the effective Arrhenius parameters Ea = 41.0 ± 0.2 kcal mol-1 and log(A/s-1) = 20.2 ± 0.1. We rationalized the experimental findings on the basis of highly accurate CCSD(T)-F12 quantum chemical calculations. Computations predict that thermolysis of TNAA involves an intricate interplay of multiple decomposition channels of the three tautomers, which are equilibrated via either monomolecular reactions or concerted double hydrogen atom transfer in the H-bonded dimers; the calculated Arrhenius parameters of the effective rate constant coincide well with experiment. Most importantly, calculations provide detailed mechanistic evidence missing in the thermoanalytical experiment and explain formation of the experimentally observed primary products N2O and NO2. Along with the kinetics and mechanism of decomposition, the proposed approach yields accurate thermochemistry and phase change data of TNAA.

15.
J Phys Chem A ; 121(48): 9173-9184, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29111733

RESUMO

A detailed analysis of the reaction of CH3CCH2 and CH3CHCH with molecular oxygen is presented. The C3H5O2 potential energy surface was characterized using a combination of electronic structure methods. The majority of the stationary points on the PES was determined at the CCSD(T)-F12a/cc-pVTZ-F12//B2PLYPD3/cc-pVTZ level of theory, with the remaining transition states computed using multireference methods. Microcanonical rate theory and the master equation are used to determine the temperature- and pressure-dependent rate coefficients for each reaction channel. The main product channels are CH2O + CH3CO for CH3CCH2 and CH3CHO + CHO for CH3CHCH. The rate constants for these two reactions at 1 atm are k = 9.03 × 1022 × T-3.21 × exp-2162/T and 1.50 × 1019 × T-2.10 × exp-1260/T cm-3 mol-1 s-1, respectively. In contrast to C2H3 + O2, the methyl-vinyl + O2 reactions remain chain propagating, even at high temperatures. The new rate coefficients were implemented in a detailed mechanism taken from the literature. These changes have a modest effect on the ignition delay time and laminar flame speeds for propene combustion.

16.
J Phys Chem A ; 121(9): 1890-1899, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28195726

RESUMO

Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants calculated in this work have also been used in predicting the reactivity of the target fuels of 1-butene, 2-butene, isobutene, 2-methylfuran, 2,5-dimethylfuran, and toluene, and the results show that the ignition delay times for those fuels have been increased by a factor of 1.5-3. This work provides a first systematic study of one of the key initiation reaction for compounds containing allylic hydrogen atoms.

17.
J Phys Chem A ; 121(20): 3827-3850, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440652

RESUMO

The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26-261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.

18.
J Phys Chem A ; 119(28): 7766-79, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25978112

RESUMO

State-of-the-art calculations of the C2H3O2 potential energy surface are presented. A new method is described for computing the interaction potential for R + O2 reactions. The method, which combines accurate determination of the quartet potential along the doublet minimum energy path with multireference calculations of the doublet/quartet splitting, decreases the uncertainty in the doublet potential and thence the rate constants by more than a factor of 2. The temperature- and pressure-dependent rate coefficients are computed using variable reaction coordinate transition-state theory, variational transition-state theory, and conventional transition-state theory, as implemented in a new RRKM/ME code. The main bimolecular product channels are CH2O + HCO at lower temperatures and CH2CHO + O at higher temperatures. Above 10 atm, the collisional stabilization of CH2CHOO directly competes with these two product channels. CH2CHOO decomposes primarily to CH2O + HCO. The next two most significant bimolecular products are OCHCHO + H and (3)CHCHO + OH, and not C2H2 + HO2. C2H3 + O2 will be predominantly chain branching above 1700 K. Uncertainty analysis is presented for the two most important transition states. The uncertainties in these two barrier heights result in a significant uncertainty in the temperature at which CH2CHO + O overtakes all other product channels.

19.
J Phys Chem A ; 119(28): 7116-29, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25860187

RESUMO

Low-temperature propane oxidation was studied at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ∼1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O2 reactions by direct HO2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C3H6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.

20.
J Phys Chem A ; 119(28): 7095-115, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25946172

RESUMO

The present paper describes further development of the multiscale informatics approach to kinetic model formulation of Burke et al. (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547-555) that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation of kinetic models to unexplored conditions. Here, we extend and generalize the multiscale informatics strategy to treat systems of considerable complexity-involving multiwell reactions, potentially missing reactions, nonstatistical product branching ratios, and non-Boltzmann (i.e., nonthermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multiscale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both "parametric" and "structural" uncertainties. Theoretical parameters (e.g., barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g., initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multiscale informed model provides a consistent quantitative explanation of both ab initio calculations and time-resolved species measurements. The present results show that interpretations of OH measurements are significantly more complicated than previously thought-in addition to barrier heights for key transition states considered previously, OH profiles also depend on additional theoretical parameters for R + O2 reactions, secondary reactions, QOOH + O2 reactions, and treatment of non-Boltzmann reaction sequences. Extraction of physically rigorous information from those measurements may require more sophisticated treatment of all of those model aspects, as well as additional experimental data under more conditions, to discriminate among possible interpretations and ensure model reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA