Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 620(7976): 1025-1030, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532928

RESUMO

HIV-1 remains a global health crisis1, highlighting the need to identify new targets for therapies. Here, given the disproportionate HIV-1 burden and marked human genome diversity in Africa2, we assessed the genetic determinants of control of set-point viral load in 3,879 people of African ancestries living with HIV-1 participating in the international collaboration for the genomics of HIV3. We identify a previously undescribed association signal on chromosome 1 where the peak variant associates with an approximately 0.3 log10-transformed copies per ml lower set-point viral load per minor allele copy and is specific to populations of African descent. The top associated variant is intergenic and lies between a long intergenic non-coding RNA (LINC00624) and the coding gene CHD1L, which encodes a helicase that is involved in DNA repair4. Infection assays in iPS cell-derived macrophages and other immortalized cell lines showed increased HIV-1 replication in CHD1L-knockdown and CHD1L-knockout cells. We provide evidence from population genetic studies that Africa-specific genetic variation near CHD1L associates with HIV replication in vivo. Although experimental studies suggest that CHD1L is able to limit HIV infection in some cell types in vitro, further investigation is required to understand the mechanisms underlying our observations, including any potential indirect effects of CHD1L on HIV spread in vivo that our cell-based assays cannot recapitulate.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Variação Genética , Infecções por HIV , HIV-1 , Carga Viral , Humanos , Linhagem Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Carga Viral/genética , África , Cromossomos Humanos Par 1/genética , Alelos , RNA Longo não Codificante/genética , Replicação Viral
2.
PLoS Genet ; 19(10): e1010952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782669

RESUMO

Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.


Assuntos
Haploinsuficiência , Transcriptoma , Animais , Humanos , Camundongos , Haploinsuficiência/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Convulsões/genética , Transcriptoma/genética
3.
Nat Rev Genet ; 20(12): 747-759, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605095

RESUMO

The first phase of genome-wide association studies (GWAS) assessed the role of common variation in human disease. Advances optimizing and economizing high-throughput sequencing have enabled a second phase of association studies that assess the contribution of rare variation to complex disease in all protein-coding genes. Unlike the early microarray-based studies, sequencing-based studies catalogue the full range of genetic variation, including the evolutionarily youngest forms. Although the experience with common variants helped establish relevant standards for genome-wide studies, the analysis of rare variation introduces several challenges that require novel analysis approaches.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Herança Multifatorial , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Humanos
4.
Nature ; 571(7763): 107-111, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31217582

RESUMO

Large-scale genome sequencing is poised to provide a substantial increase in the rate of discovery of disease-associated mutations, but the functional interpretation of such mutations remains challenging. Here we show that deletions of a sequence on human chromosome 16 that we term the intestine-critical region (ICR) cause intractable congenital diarrhoea in infants1,2. Reporter assays in transgenic mice show that the ICR contains a regulatory sequence that activates transcription during the development of the gastrointestinal system. Targeted deletion of the ICR in mice caused symptoms that recapitulated the human condition. Transcriptome analysis revealed that an unannotated open reading frame (Percc1) flanks the regulatory sequence, and the expression of this gene was lost in the developing gut of mice that lacked the ICR. Percc1-knockout mice displayed phenotypes similar to those observed upon ICR deletion in mice and patients, whereas an ICR-driven Percc1 transgene was sufficient to rescue the phenotypes found in mice that lacked the ICR. Together, our results identify a gene that is critical for intestinal function and underscore the need for targeted in vivo studies to interpret the growing number of clinical genetic findings that do not affect known protein-coding genes.


Assuntos
Diarreia/congênito , Diarreia/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes , Intestinos/fisiologia , Deleção de Sequência/genética , Animais , Cromossomos Humanos Par 16/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Loci Gênicos/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linhagem , Fenótipo , Ativação Transcricional , Transcriptoma/genética , Transgenes/genética
5.
Hum Mol Genet ; 31(14): 2307-2316, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137044

RESUMO

Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1 and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localize to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high-depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients, we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here, we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes and reconceptualize the disorder as a ciliopathy.


Assuntos
Ciliopatias , Hamartoma , Doenças Hipotalâmicas , Ciliopatias/genética , Hamartoma/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/genética , Imageamento por Ressonância Magnética
6.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849577

RESUMO

Gene set-based signal detection analyses are used to detect an association between a trait and a set of genes by accumulating signals across the genes in the gene set. Since signal detection is concerned with identifying whether any of the genes in the gene set are non-null, a goodness-of-fit (GOF) test can be used to compare whether the observed distribution of gene-level tests within the gene set agrees with the theoretical null distribution. Here, we present a flexible gene set-based signal detection framework based on tail-focused GOF statistics. We show that the power of the various statistics in this framework depends critically on two parameters: the proportion of genes within the gene set that are non-null and the degree of separation between the null and alternative distributions of the gene-level tests. We give guidance on which statistic to choose for a given situation and implement the methods in a fast and user-friendly R package, wHC (https://github.com/mqzhanglab/wHC). Finally, we apply these methods to a whole exome sequencing study of amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Testes Genéticos , Humanos , Fenótipo , Sequenciamento do Exoma
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903660

RESUMO

Extreme phenotype sequencing has led to the identification of high-impact rare genetic variants for many complex disorders but has not been applied to studies of severe schizophrenia. We sequenced 112 individuals with severe, extremely treatment-resistant schizophrenia, 218 individuals with typical schizophrenia, and 4,929 controls. We compared the burden of rare, damaging missense and loss-of-function variants between severe, extremely treatment-resistant schizophrenia, typical schizophrenia, and controls across mutation intolerant genes. Individuals with severe, extremely treatment-resistant schizophrenia had a high burden of rare loss-of-function (odds ratio, 1.91; 95% CI, 1.39 to 2.63; P = 7.8 × 10-5) and damaging missense variants in intolerant genes (odds ratio, 2.90; 95% CI, 2.02 to 4.15; P = 3.2 × 10-9). A total of 48.2% of individuals with severe, extremely treatment-resistant schizophrenia carried at least one rare, damaging missense or loss-of-function variant in intolerant genes compared to 29.8% of typical schizophrenia individuals (odds ratio, 2.18; 95% CI, 1.33 to 3.60; P = 1.6 × 10-3) and 25.4% of controls (odds ratio, 2.74; 95% CI, 1.85 to 4.06; P = 2.9 × 10-7). Restricting to genes previously associated with schizophrenia risk strengthened the enrichment with 8.9% of individuals with severe, extremely treatment-resistant schizophrenia carrying a damaging missense or loss-of-function variant compared to 2.3% of typical schizophrenia (odds ratio, 5.48; 95% CI, 1.52 to 19.74; P = 0.02) and 1.6% of controls (odds ratio, 5.82; 95% CI, 3.00 to 11.28; P = 2.6 × 10-8). These results demonstrate the power of extreme phenotype case selection in psychiatric genetics and an approach to augment schizophrenia gene discovery efforts.


Assuntos
Predisposição Genética para Doença/genética , Esquizofrenia/genética , Idoso , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Deficiências do Desenvolvimento/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Mutação com Perda de Função , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Risco , Esquizofrenia Resistente ao Tratamento/genética , Índice de Gravidade de Doença
9.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930847

RESUMO

Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 "trios" (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10-4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C Both RYR2 mutations are pathogenic (P = 1.7 × 10-7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10-7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.


Assuntos
Arritmias Cardíacas/genética , Sinalização do Cálcio/genética , Morte Súbita , Epilepsia/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Sequenciamento do Exoma
10.
Am J Hum Genet ; 106(2): 215-233, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032514

RESUMO

Non-coding transcriptional regulatory elements are critical for controlling the spatiotemporal expression of genes. Here, we demonstrate that the sizes and number of enhancers linked to a gene reflect its disease pathogenicity. Moreover, genes with redundant enhancer domains are depleted of cis-acting genetic variants that disrupt gene expression, and they are buffered against the effects of disruptive non-coding mutations. Our results demonstrate that dosage-sensitive genes have evolved a robustness to the disruptive effects of genetic variation by expanding their regulatory domains. This solves a puzzle about why genes associated with human disease are depleted of cis-eQTLs (cis-expression quantitative trait loci), suggesting that this relationship might complicate gene identification in causal genome-wide association studies (GWASs) using eQTL information, and establishes a framework for identifying non-coding regulatory variation with phenotypic consequences.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Humanos
11.
Am J Hum Genet ; 107(1): 83-95, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32516569

RESUMO

Synonymous codon usage has been identified as a determinant of translational efficiency and mRNA stability in model organisms and human cell lines. However, whether natural selection shapes human codon content to optimize translation efficiency is unclear. Furthermore, aside from those that affect splicing, synonymous mutations are typically ignored as potential contributors to disease. Using genetic sequencing data from nearly 200,000 individuals, we uncover clear evidence that natural selection optimizes codon content in the human genome. In deriving intolerance metrics to quantify gene-level constraint on synonymous variation, we discover that dosage-sensitive genes, DNA-damage-response genes, and cell-cycle-regulated genes are particularly intolerant to synonymous variation. Notably, we illustrate that reductions in codon optimality in BRCA1 can attenuate its function. Our results reveal that synonymous mutations most likely play an underappreciated role in human variation.


Assuntos
Uso do Códon/genética , Genoma Humano/genética , Seleção Genética/genética , Códon/genética , Evolução Molecular , Humanos , Mutação/genética , Splicing de RNA/genética , Estabilidade de RNA/genética
12.
Annu Rev Neurosci ; 38: 47-68, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25840007

RESUMO

Next-generation sequencing, which allows genome-wide detection of rare and de novo mutations, is transforming neuropsychiatric disease genetics through identifying on an unprecedented scale genes and protein-coding mutations that confer risk. Although understanding how regulatory variants influence risk remains a challenge, we are likely transitioning into a phase of neuropsychiatric disease genetics in which the rate-limiting step may no longer be gene discovery. Instead, the future will concentrate more on the biological and clinical translation of the torrent of specific risk mutations identified through next-generation sequencing. Here, we review the recent progress that resulted specifically from exome sequencing and emphasize the need for rigorous statistical evaluation of the expanding data sets, as well as expanded functional analysis of implicated proteins and mutations. Then, we introduce some of the expected opportunities and challenges investigators face when moving beyond the exome. Finally, we briefly highlight the challenge of deriving translational benefit from the progress in genetics.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Transtornos Mentais/genética , Doenças do Sistema Nervoso/genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação
13.
N Engl J Med ; 383(12): 1107-1116, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32786180

RESUMO

BACKGROUND: In the majority of cases, the cause of stillbirth remains unknown despite detailed clinical and laboratory evaluation. Approximately 10 to 20% of stillbirths are attributed to chromosomal abnormalities. However, the causal nature of single-nucleotide variants and small insertions and deletions in exomes has been understudied. METHODS: We generated exome sequencing data for 246 stillborn cases and followed established guidelines to identify causal variants in disease-associated genes. These genes included those that have been associated with stillbirth and strong candidate genes. We also evaluated the contribution of 18,653 genes in case-control analyses stratified according to the degree of depletion of functional variation (described here as "intolerance" to variation). RESULTS: We identified molecular diagnoses in 15 of 246 cases of stillbirth (6.1%) involving seven genes that have been implicated in stillbirth and six disease genes that are good candidates for phenotypic expansion. Among the cases we evaluated, we also found an enrichment of loss-of-function variants in genes that are intolerant to such variation in the human population (odds ratio, 2.15; 95% confidence interval [CI], 1.46 to 3.06). Loss-of-function variants in intolerant genes were concentrated in genes that have not been associated with human disease (odds ratio, 2.22; 95% CI, 1.41 to 3.34), findings that differ from those in two postnatal clinical populations that were also evaluated in this study. CONCLUSIONS: Our findings establish the diagnostic utility of clinical exome sequencing to evaluate the role of small genomic changes in stillbirth. The strength of the novel risk signal (as generated through the stratified analysis) was similar to that in known disease genes, which indicates that the genetic cause of stillbirth remains largely unknown. (Funded by the Institute for Genomic Medicine.).


Assuntos
Variação Genética , Mutação , Natimorto/genética , Feminino , Mutação da Fase de Leitura , Humanos , Mutação com Perda de Função , Mutação de Sentido Incorreto , Gravidez , Sequenciamento do Exoma
14.
Ann Neurol ; 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534060

RESUMO

OBJECTIVE: Genetic factors have long been debated as a cause of failure of surgery for mesial temporal lobe epilepsy (MTLE). We investigated whether rare genetic variation influences seizure outcomes of MTLE surgery. METHODS: We performed an international, multicenter, whole exome sequencing study of patients who underwent surgery for drug-resistant, unilateral MTLE with normal magnetic resonance imaging (MRI) or MRI evidence of hippocampal sclerosis and ≥2-year postsurgical follow-up. Patients with either sustained seizure freedom (favorable outcome) or ongoing uncontrolled seizures since surgery (unfavorable outcome) were included. Exomes of controls without epilepsy were also included. Gene set burden analyses were carried out to identify genes with significant enrichment of rare deleterious variants in patients compared to controls. RESULTS: Nine centers from 3 continents contributed 206 patients operated for drug-resistant unilateral MTLE, of whom 196 (149 with favorable outcome and 47 with unfavorable outcome) were included after stringent quality control. Compared to 8,718 controls, MTLE cases carried a higher burden of ultrarare missense variants in constrained genes that are intolerant to loss-of-function (LoF) variants (odds ratio [OR] = 2.6, 95% confidence interval [CI] = 1.9-3.5, p = 1.3E-09) and in genes encoding voltage-gated cation channels (OR = 2.4, 95% CI = 1.4-3.8, p = 2.7E-04). Proportions of subjects with such variants were comparable between patients with favorable outcome and those with unfavorable outcome, with no significant between-group differences. INTERPRETATION: Rare variation contributes to the genetic architecture of MTLE, but does not appear to have a major role in failure of MTLE surgery. These findings can be incorporated into presurgical decision-making and counseling. ANN NEUROL 2022.

15.
Mol Psychiatry ; 27(3): 1435-1447, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34799694

RESUMO

Schizophrenia has a multifactorial etiology, involving a polygenic architecture. The potential benefit of whole genome sequencing (WGS) in schizophrenia and other psychotic disorders is not well studied. We investigated the yield of clinical WGS analysis in 251 families with a proband diagnosed with schizophrenia (N = 190), schizoaffective disorder (N = 49), or other conditions involving psychosis (N = 48). Participants were recruited in Israel and USA, mainly of Jewish, Arab, and other European ancestries. Trio (parents and proband) WGS was performed for 228 families (90.8%); in the other families, WGS included parents and at least two affected siblings. In the secondary analyses, we evaluated the contribution of rare variant enrichment in particular gene sets, and calculated polygenic risk score (PRS) for schizophrenia. For the primary outcome, diagnostic rate was 6.4%; we found clinically significant, single nucleotide variants (SNVs) or small insertions or deletions (indels) in 14 probands (5.6%), and copy number variants (CNVs) in 2 (0.8%). Significant enrichment of rare loss-of-function variants was observed in a gene set of top schizophrenia candidate genes in affected individuals, compared with population controls (N = 6,840). The PRS for schizophrenia was significantly increased in the affected individuals group, compared to their unaffected relatives. Last, we were also able to provide pharmacogenomics information based on CYP2D6 genotype data for most participants, and determine their antipsychotic metabolizer status. In conclusion, our findings suggest that WGS may have a role in the setting of both research and genetic counseling for individuals with schizophrenia and other psychotic disorders and their families.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Predisposição Genética para Doença/genética , Humanos , Herança Multifatorial/genética , Transtornos Psicóticos/genética , Transtornos Psicóticos/psicologia , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Sequenciamento Completo do Genoma
16.
Am J Respir Crit Care Med ; 206(1): 56-69, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417304

RESUMO

Rationale: Genetic studies of idiopathic pulmonary fibrosis (IPF) have improved our understanding of this disease, but not all causal loci have been identified. Objectives: To identify genes enriched with rare deleterious variants in IPF and familial pulmonary fibrosis. Methods: We performed gene burden analysis of whole-exome data, tested single variants for disease association, conducted KIF15 (kinesin family member 15) functional studies, and examined human lung single-cell RNA sequencing data. Measurements and Main Results: Gene burden analysis of 1,725 cases and 23,509 control subjects identified heterozygous rare deleterious variants in KIF15, a kinesin involved in spindle separation during mitosis, and three telomere-related genes (TERT [telomerase reverse transcriptase], RTEL1 [regulator of telomere elongation helicase 1], and PARN [poly(A)-specific ribonuclease]). KIF15 was implicated in autosomal-dominant models of rare deleterious variants (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.7-8.8; P = 2.55 × 10-7) and rare protein-truncating variants (OR, 7.6; 95% CI, 3.3-17.1; P = 8.12 × 10-7). Meta-analyses of the discovery and replication cohorts, including 2,966 cases and 29,817 control subjects, confirm the involvement of KIF15 plus the three telomere-related genes. A common variant within a KIF15 intron (rs74341405; OR, 1.6; 95% CI, 1.4-1.9; P = 5.63 × 10-10) is associated with IPF risk, confirming a prior report. Lymphoblastoid cells from individuals heterozygous for the common variant have decreased KIF15 and reduced rates of cell growth. Cell proliferation is dependent on KIF15 in the presence of an inhibitor of Eg5/KIF11, which has partially redundant function. KIF15 is expressed specifically in replicating human lung cells and shows diminished expression in replicating epithelial cells of patients with IPF. Conclusions: Both rare deleterious variants and common variants in KIF15 link a nontelomerase pathway of cell proliferation with IPF susceptibility.


Assuntos
Fibrose Pulmonar Idiopática , Cinesinas , Telomerase , Exoma , Humanos , Fibrose Pulmonar Idiopática/genética , Cinesinas/genética , Telomerase/genética , Telômero
17.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420557

RESUMO

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Assuntos
Carboxipeptidases/deficiência , Cerebelo/enzimologia , Neurônios Motores/enzimologia , Nervos Periféricos/enzimologia , Células de Purkinje/enzimologia , Coluna Vertebral/enzimologia , Degenerações Espinocerebelares/enzimologia , Cerebelo/patologia , Feminino , Proteínas de Ligação ao GTP , Humanos , Masculino , Neurônios Motores/patologia , Peptídeos/genética , Peptídeos/metabolismo , Nervos Periféricos/patologia , Processamento de Proteína Pós-Traducional , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Coluna Vertebral/patologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia
18.
Am J Hum Genet ; 104(2): 299-309, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686509

RESUMO

Different parts of a gene can be of differential importance to development and health. This regional heterogeneity is also apparent in the distribution of disease-associated mutations, which often cluster in particular regions of disease-associated genes. The ability to precisely estimate functionally important sub-regions of genes will be key in correctly deciphering relationships between genetic variation and disease. Previous methods have had some success using standing human variation to characterize this variability in importance by measuring sub-regional intolerance, i.e., the depletion in functional variation from expectation within a given region of a gene. However, the ability to precisely estimate local intolerance was restricted by the fact that only information within a given sub-region is used, leading to instability in local estimates, especially for small regions. We show that borrowing information across regions using a Bayesian hierarchical model stabilizes estimates, leading to lower variability and improved predictive utility. Specifically, our approach more effectively identifies regions enriched for ClinVar pathogenic variants. We also identify significant correlations between sub-region intolerance and the distribution of pathogenic variation in disease-associated genes, with AUCs for classifying de novo missense variants in Online Mendelian Inheritance in Man (OMIM) genes of up to 0.86 using exonic sub-regions and 0.91 using sub-regions defined by protein domains. This result immediately suggests that considering the intolerance of regions in which variants are found may improve diagnostic interpretation. We also illustrate the utility of integrating regional intolerance into gene-level disease association tests with a study of known disease-associated genes for epileptic encephalopathy.


Assuntos
Componentes do Gene/genética , Modelos Genéticos , Mutação/genética , Espasmos Infantis/genética , Espasmos Infantis/patologia , Teorema de Bayes , Éxons/genética , Humanos
19.
N Engl J Med ; 381(7): 668-676, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412182

RESUMO

Knowledge gained from observational cohort studies has dramatically advanced the prevention and treatment of diseases. Many of these cohorts, however, are small, lack diversity, or do not provide comprehensive phenotype data. The All of Us Research Program plans to enroll a diverse group of at least 1 million persons in the United States in order to accelerate biomedical research and improve health. The program aims to make the research results accessible to participants, and it is developing new approaches to generate, access, and make data broadly available to approved researchers. All of Us opened for enrollment in May 2018 and currently enrolls participants 18 years of age or older from a network of more than 340 recruitment sites. Elements of the program protocol include health questionnaires, electronic health records (EHRs), physical measurements, the use of digital health technology, and the collection and analysis of biospecimens. As of July 2019, more than 175,000 participants had contributed biospecimens. More than 80% of these participants are from groups that have been historically underrepresented in biomedical research. EHR data on more than 112,000 participants from 34 sites have been collected. The All of Us data repository should permit researchers to take into account individual differences in lifestyle, socioeconomic factors, environment, and biologic characteristics in order to advance precision diagnosis, prevention, and treatment.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Estudos de Coortes , Conjuntos de Dados como Assunto , Registros Eletrônicos de Saúde , Inquéritos Epidemiológicos , Humanos , Estudos Observacionais como Assunto , Medicina de Precisão , Projetos de Pesquisa , Estados Unidos
20.
Genome Res ; 29(5): 809-818, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30940688

RESUMO

Large-scale sequencing efforts in amyotrophic lateral sclerosis (ALS) have implicated novel genes using gene-based collapsing methods. However, pathogenic mutations may be concentrated in specific genic regions. To address this, we developed two collapsing strategies: One focuses rare variation collapsing on homology-based protein domains as the unit for collapsing, and the other is a gene-level approach that, unlike standard methods, leverages existing evidence of purifying selection against missense variation on said domains. The application of these two collapsing methods to 3093 ALS cases and 8186 controls of European ancestry, and also 3239 cases and 11,808 controls of diversified populations, pinpoints risk regions of ALS genes, including SOD1, NEK1, TARDBP, and FUS While not clearly implicating novel ALS genes, the new analyses not only pinpoint risk regions in known genes but also highlight candidate genes as well.


Assuntos
Esclerose Lateral Amiotrófica/genética , Análise Mutacional de DNA/métodos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Feminino , Variação Genética , Humanos , Masculino , Mutação , Quinase 1 Relacionada a NIMA/genética , Domínios Proteicos/genética , Proteína FUS de Ligação a RNA/genética , Fatores de Risco , Superóxido Dismutase-1/genética , População Branca/genética , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA