Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2306357120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38150462

RESUMO

Many predator species make regular excursions from near-surface waters to the twilight (200 to 1,000 m) and midnight (1,000 to 3,000 m) zones of the deep pelagic ocean. While the occurrence of significant vertical movements into the deep ocean has evolved independently across taxonomic groups, the functional role(s) and ecological significance of these movements remain poorly understood. Here, we integrate results from satellite tagging efforts with model predictions of deep prey layers in the North Atlantic Ocean to determine whether prey distributions are correlated with vertical habitat use across 12 species of predators. Using 3D movement data for 344 individuals who traversed nearly 1.5 million km of pelagic ocean in [Formula: see text]42,000 d, we found that nearly every tagged predator frequented the twilight zone and many made regular trips to the midnight zone. Using a predictive model, we found clear alignment of predator depth use with the expected location of deep pelagic prey for at least half of the predator species. We compared high-resolution predator data with shipboard acoustics and selected representative matches that highlight the opportunities and challenges in the analysis and synthesis of these data. While not all observed behavior was consistent with estimated prey availability at depth, our results suggest that deep pelagic biomass likely has high ecological value for a suite of commercially important predators in the open ocean. Careful consideration of the disruption to ecosystem services provided by pelagic food webs is needed before the potential costs and benefits of proceeding with extractive activities in the deep ocean can be evaluated.


Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Animais , Oceano Atlântico , Biomassa
3.
PLoS One ; 10(10): e0141478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505476

RESUMO

The compiled data for this study represents the first Atlantic and Mediterranean-wide effort to pool all available biometric data for Atlantic bluefin tuna (Thunnus thynnus) with the collaboration of many countries and scientific groups. Biometric relationships were based on an extensive sampling (over 140,000 fish sampled), covering most of the fishing areas for this species in the North Atlantic Ocean and Mediterranean Sea. Sensitivity analyses were carried out to evaluate the representativeness of sampling and explore the most adequate procedure to fit the weight-length relationship (WLR). The selected model for the WLRs by stock included standardized data series (common measurement types) weighted by the inverse variability. There was little difference between annual stock-specific round weight-straight fork length relationships, with an overall difference of 6% in weight. The predicted weight by month was estimated as an additional component in the exponent of the weight-length function. The analyses of monthly variations of fish condition by stock, maturity state and geographic area reflect annual cycles of spawning and feeding behavior. We update and improve upon the biometric relationships for bluefin currently used by the International Commission for the Conservation of Atlantic Tunas, by incorporating substantially larger datasets than ever previously compiled, providing complete documentation of sources and employing robust statistical fitting. WLRs and other conversion factors estimated in this study differ from the ones used in previous bluefin stock assessments.


Assuntos
Comportamento Alimentar/fisiologia , Atum/anatomia & histologia , Atum/fisiologia , Animais , Oceano Atlântico , Pesqueiros , Mar Mediterrâneo
4.
PLoS One ; 8(9): e75480, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069420

RESUMO

The Gulf of Maine, NW Atlantic Ocean, is a productive, seasonal foraging ground for Atlantic bluefin tuna (Thunnus thynnus), but commercial landings of adult size classes were up to 40% below the allocated total allowable catch between 2004 to 2008 for the rod and reel, harpoon, and purse seine categories in the Gulf of Maine. Reduction in Atlantic bluefin tuna catches in the Gulf of Maine could represent a decline in spawning stock biomass, but given wide-ranging, complex migration patterns, and high energetic requirements, an alternative hypothesis is that their dispersal patterns shifted to regions with higher prey abundance or profitability, reducing availability to U.S. fishing fleets. This study fit generalized linear models to Atlantic bluefin tuna landings data collected from fishermen's logbooks (1979-2005) as well as the distances between bluefin tuna schools and Atlantic herring (Clupeaharengus), a primary prey species, to test alternative hypotheses for observed shifts in Atlantic bluefin tuna availability in the Gulf of Maine. For the bluefin model, landings varied by day of year, latitude and longitude. The effect of latitude differed by day of year and the effect of longitude differed by year. The distances between Atlantic bluefin tuna schools and Atlantic herring schools were significantly smaller (p<0.05) than would be expected from a randomly distributed population. A time series of average bluefin tuna school positions was positively correlated with the average number of herring captured per tow on Georges Bank in spring and autumn surveys respectively (p<0.01, r(2)=0.24, p<0.01, r(2)=0.42). Fishermen's logbooks contributed novel spatial and temporal information towards testing these hypotheses for the bluefin tuna fishery.


Assuntos
Ecossistema , Atum , Animais , Oceano Atlântico , Maine , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA