Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 13: 152, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408234

RESUMO

BACKGROUND: Steady-state (13)C-based metabolic flux analysis ((13)C-MFA) is the most powerful method available for the quantification of intracellular fluxes. These analyses include concertedly linked experimental and computational stages: (i) assuming the metabolic model and optimizing the experimental design; (ii) feeding the investigated organism using a chosen (13)C-labeled substrate (tracer); (iii) measuring the extracellular effluxes and detecting the (13)C-patterns of intracellular metabolites; and (iv) computing flux parameters that minimize the differences between observed and simulated measurements, followed by evaluating flux statistics. In its early stages, (13)C-MFA was performed on the basis of data obtained in a single labeling experiment (SLE) followed by exploiting the developed high-performance computational software. Recently, the advantages of parallel labeling experiments (PLEs), where several LEs are conducted under the conditions differing only by the tracer(s) choice, were demonstrated, particularly with regard to improving flux precision due to the synergy of complementary information. The availability of an open-source software adjusted for PLE-based (13)C-MFA is an important factor for PLE implementation. RESULTS: The open-source software OpenFLUX, initially developed for the analysis of SLEs, was extended for the computation of PLE data. Using the OpenFLUX2, in silico simulation confirmed that flux precision is improved when (13)C-MFA is implemented by fitting PLE data to the common model compared with SLE-based analysis. Efficient flux resolution could be achieved in the PLE-mediated analysis when the choice of tracer was based on an experimental design computed to minimize the flux variances from different parts of the metabolic network. The analysis provided by OpenFLUX2 mainly includes (i) the optimization of the experimental design, (ii) the computation of the flux parameters from LEs data, (iii) goodness-of-fit testing of the model's adequacy, (iv) drawing conclusions concerning the identifiability of fluxes and construction of a contribution matrix reflecting the relative contribution of the measurement variances to the flux variances, and (v) precise determination of flux confidence intervals using a fine-tunable and convergence-controlled Monte Carlo-based method. CONCLUSIONS: The developed open-source OpenFLUX2 provides a friendly software environment that facilitates beginners and existing OpenFLUX users to implement LEs for steady-state (13)C-MFA including experimental design, quantitative evaluation of flux parameters and statistics.


Assuntos
Marcação por Isótopo , Software , Isótopos de Carbono/química
2.
Appl Microbiol Biotechnol ; 93(1): 331-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22159605

RESUMO

Pantoea ananatis AJ13355 is a newly identified member of the Enterobacteriaceae family with promising biotechnological applications. This bacterium is able to grow at an acidic pH and is resistant to saturating concentrations of L-glutamic acid, making this organism a suitable host for the production of L-glutamate. In the current study, the complete genomic sequence of P. ananatis AJ13355 was determined. The genome was found to consist of a single circular chromosome consisting of 4,555,536 bp [DDBJ: AP012032] and a circular plasmid, pEA320, of 321,744 bp [DDBJ: AP012033]. After automated annotation, 4,071 protein-coding sequences were identified in the P. ananatis AJ13355 genome. For 4,025 of these genes, functions were assigned based on homologies to known proteins. A high level of nucleotide sequence identity (99%) was revealed between the genome of P. ananatis AJ13355 and the previously published genome of P. ananatis LMG 20103. Short colinear regions, which are identical to DNA sequences in the Escherichia coli MG1655 chromosome, were found to be widely dispersed along the P. ananatis AJ13355 genome. Conjugal gene transfer from E. coli to P. ananatis, mediated by homologous recombination between short identical sequences, was also experimentally demonstrated. The determination of the genome sequence has paved the way for the directed metabolic engineering of P. ananatis to produce biotechnologically relevant compounds.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Pantoea/genética , Cromossomos Bacterianos , Conjugação Genética , DNA Circular/química , DNA Circular/genética , Escherichia coli/genética , Transferência Genética Horizontal , Dados de Sequência Molecular , Plasmídeos , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
3.
Microb Cell Fact ; 10: 64, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21819557

RESUMO

BACKGROUND: Plasmid-less, engineered Bacillus strains have several advantages over plasmid-carrier variants. Specifically, their stability and potential ecological safety make them of use in industrial applications. As a rule, however, it is necessary to incorporate many copies of a key gene into a chromosome to achieve strain performance that is comparable to that of cells carrying multiple copies of a recombinant plasmid. RESULTS: A plasmid-less B. subtilis JE852-based strain secreting glutamyl-specific protease (GSP-the protein product of the mpr gene from B. amyloliquefaciens) was constructed that exhibits decreased levels of other extracellular proteases. Ten copies of an mprB.amy cassette in which the GSP gene was placed between the promoter of the B. amyloliquefaciens rplU-rpmA genes and the Rho-independent transcription terminator were ectopically inserted into designated (3 copies) and random (7 copies) points in the recipient chromosome. The resulting strain produced approximately 0.5 g/L of secreted GSP after bacterial cultivation in flasks with starch-containing media, and its performance was comparable to an analogous strain in which the mprB.amy cassette was carried on a multi-copy plasmid. CONCLUSION: A novel strategy for ectopically integrating a cassette into multiple random locations in the B. subtilis chromosome was developed. This new method is based on the construction of DNA fragments in which the desired gene, marked by antibiotic resistance, is sandwiched between "front" and "back" portions of random chromosomal DNA restriction fragments. These fragments were subsequently inserted into the targeted sites of the chromosome using double-cross recombination. The construction of a marker-free strain was achieved by gene conversion between the integrated marked gene and a marker-less variant carried by plasmid DNA, which was later removed from the cells.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/biossíntese , Cromossomos Bacterianos , Serina Endopeptidases/biossíntese , Bacillus/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Dosagem de Genes , Plasmídeos/química , Plasmídeos/metabolismo , Serina Endopeptidases/genética
4.
BMC Mol Biol ; 10: 34, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19389224

RESUMO

BACKGROUND: Pantoea ananatis, a member of the Enterobacteriacea family, is a new and promising subject for biotechnological research. Over recent years, impressive progress in its application to L-glutamate production has been achieved. Nevertheless, genetic and biotechnological studies of Pantoea ananatis have been impeded because of the absence of genetic tools for rapid construction of direct mutations in this bacterium. The lambda Red-recombineering technique previously developed in E. coli and used for gene inactivation in several other bacteria is a high-performance tool for rapid construction of precise genome modifications. RESULTS: In this study, the expression of lambda Red genes in P. ananatis was found to be highly toxic. A screening was performed to select mutants of P. ananatis that were resistant to the toxic affects of lambda Red. A mutant strain, SC17(0) was identified that grew well under conditions of simultaneous expression of lambda gam, bet, and exo genes. Using this strain, procedures for fast introduction of multiple rearrangements to the Pantoea ananatis genome based on the lambda Red-dependent integration of the PCR-generated DNA fragments with as short as 40 bp flanking homologies have been demonstrated. CONCLUSION: The lambda Red-recombineering technology was successfully used for rapid generation of chromosomal modifications in the specially selected P. ananatis recipient strain. The procedure of electro-transformation with chromosomal DNA has been developed for transfer of the marked mutation between different P. ananatis strains. Combination of these techniques with lambda Int/Xis-dependent excision of selective markers significantly accelerates basic research and construction of producing strains.


Assuntos
Bacteriófago lambda/genética , Engenharia Genética/métodos , Pantoea/genética , Recombinação Genética , Biotecnologia/métodos , Cromossomos Bacterianos/genética , Eletroporação/métodos , Mutação , Plasmídeos/genética , Seleção Genética
5.
FEMS Microbiol Lett ; 318(1): 55-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21306430

RESUMO

Pantoea ananatis accumulates gluconate during aerobic growth in the presence of glucose. Computer analysis of the P. ananatis SC17(0) sequenced genome revealed an ORF encoding a homologue (named gcd) of the mGDH (EC 1.1.99.17) apoenzyme from Escherichia coli and a putative pyrroloquinoline quinone (PQQ) biosynthetic operon homologous to pqqABCDEF from Klebsiella pneumoniae. Construction of Δgcd and Δpqq mutants of P. ananatis confirmed the proposed functions of these genetic elements. The P. ananatis pqqABCDEF was cloned in vivo and integrated into the chromosomes of P. ananatis and E. coli according to the Dual In/Out strategy. Introduction of a second copy of pqqABCDEF to P. ananatis SC17(0) doubled the accumulation of PQQ. Integration of the operon into E. coli MG1655ΔptsGΔmanXY restored the growth of bacteria on glucose. The obtained data show the essential role of pqqABCDEF in PQQ biosynthesis in P. ananatis and E. coli. We propose that the cloned operon could be useful for an efficient phosphoenolpyruvate-independent glucose consumption pathway due to glucose oxidation and construction of E. coli strains with the advantage of phosphoenolpyruvate-derived metabolite production.


Assuntos
Proteínas de Bactérias/genética , Glucose Desidrogenase/genética , Óperon , Cofator PQQ/biossíntese , Pantoea/enzimologia , Pantoea/genética , Proteínas de Bactérias/metabolismo , Gluconatos/metabolismo , Glucose Desidrogenase/metabolismo , Mutação , Pantoea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA