Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 27(1): 24-35, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27813437

RESUMO

The goal of this investigation was to perform a comparative analysis on how accurately 11 routinely-used in silico programs correctly predicted the mutagenicity of test compounds that contained either bulky or electron-withdrawing substituents. To our knowledge this is the first study of its kind in the literature. Such substituents are common in many pharmaceutical agents so there is a significant need for reliable in silico programs to predict precisely whether they truly pose a risk for mutagenicity. The predictions from each program were compared to experimental data derived from the Ames II test, a rapid reverse mutagenicity assay with a high degree of agreement with the traditional Ames assay. Eleven in silico programs were evaluated and compared: Derek for Windows, Derek Nexus, Leadscope Model Applier (LSMA), LSMA featuring the in vitro microbial Escherichia coli-Salmonella typhimurium TA102 A-T Suite (LSMA+), TOPKAT, CAESAR, TEST, ChemSilico (±S9 suites), MC4PC and a novel DNA docking model. The presence of bulky or electron-withdrawing functional groups in the vicinity of a mutagenic toxicophore in the test compounds clearly affected the ability of each in silico model to predict non-mutagenicity correctly. This was because of an over reliance on the part of the programs to provide mutagenicity alerts when a particular toxicophore is present irrespective of the structural environment surrounding the toxicophore. From this investigation it can be concluded that these models provide a high degree of specificity (ranging from 71% to 100%) and are generally conservative in their predictions in terms of sensitivity (ranging from 5% t o 78%). These values are in general agreement with most other comparative studies in the literature. Interestingly, the DNA docking model was the most sensitive model evaluated, suggesting a potentially useful new mode of screening for mutagens. Another important finding was that the combination of a quantitative structure-activity relationship and an expert rules system appeared to offer little advantage in terms of sensitivity, despite of the requirement for such a screening paradigm under the ICH M7 regulatory guideline.


Assuntos
Simulação por Computador , Dano ao DNA , Modelos Biológicos , Mutagênicos/toxicidade , Bibliotecas de Moléculas Pequenas/toxicidade , DNA Bacteriano/química , DNA Bacteriano/genética , Transporte de Elétrons , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Mutagenicidade/métodos , Mutagênicos/química , Valor Preditivo dos Testes , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Sensibilidade e Especificidade , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
2.
PLoS Negl Trop Dis ; 10(3): e0004506, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26942720

RESUMO

BACKGROUND: New therapeutics are needed for neglected tropical diseases including Human African trypanosomiasis (HAT), a progressive and fatal disease caused by the protozoan parasites Trypanosoma brucei gambiense and T. b. rhodesiense. There is a need for simple, efficient, cost effective methods to identify new molecules with unique molecular mechanisms of action (MMOAs). The mechanistic features of a binding mode, such as competition with endogenous substrates and time-dependence can affect the observed inhibitory IC50, and differentiate molecules and their therapeutic usefulness. Simple screening methods to determine time-dependence and competition can be used to differentiate compounds with different MMOAs in order to identify new therapeutic opportunities. METHODOLOGY/PRINCIPAL FINDINGS: In this work we report a four point screening methodology to evaluate the time-dependence and competition for inhibition of GSK3ß protein kinase isolated from T. brucei. Using this method, we identified tideglusib as a time-dependent inhibitor whose mechanism of action is time-dependent, ATP competitive upon initial binding, which transitions to ATP non-competitive with time. The enzyme activity was not recovered following 100-fold dilution of the buffer consistent with an irreversible mechanism of action. This is in contrast to the T. brucei GSK3ß inhibitor GW8510, whose inhibition was competitive with ATP, not time-dependent at all measured time points and reversible in dilution experiments. The activity of tideglusib against T. brucei parasites was confirmed by inhibition of parasite proliferation (GI50 of 2.3 µM). CONCLUSIONS/SIGNIFICANCE: Altogether this work demonstrates a straightforward method for determining molecular mechanisms of action and its application for mechanistic differentiation of two potent TbGSK3ß inhibitors. The four point MMOA method identified tideglusib as a mechanistically differentiated TbGSK3ß inhibitor. Tideglusib was shown to inhibit parasite growth in this work, and has been reported to be well tolerated in one year of dosing in human clinical studies. Consequently, further supportive studies on the potential therapeutic usefulness of tideglusib for HAT are justified.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Tiadiazóis/farmacologia , Trypanosoma brucei brucei/enzimologia , Glicogênio Sintase Quinase 3 beta , Testes de Sensibilidade Parasitária , Fatores de Tempo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA