Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 23(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443939

RESUMO

BACKGROUND: Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS: This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS: Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS: When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.


Assuntos
Malária , Superinfecção , Humanos , Senegal/epidemiologia , Incidência , Plasmodium falciparum/genética
2.
Malar J ; 19(1): 33, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964378

RESUMO

BACKGROUND: Because clustering of Plasmodium falciparum infection had been noted previously, the clustering of infection was examined at four field sites in West Africa: Dangassa and Dioro in Mali, Gambissara in The Gambia and Madina Fall in Senegal. METHODS: Clustering of infection was defined by the percent of persons with positive slides for asexual P. falciparum sleeping in a house which had been geopositioned. Data from each site were then tested for spatial, temporal and spatio-temporal clustering in relation to the prevalence of infection from smear surveys. RESULTS: These studies suggest that clustering of P. falciparum infection also affects the effectiveness of control interventions. For example, the clustering of infection in Madina Fall disappeared in 2014-2016 after vector control eliminated the only breeding site in 2013. In contrast, the temporal clustering of infection in Dioro (rainy season of 2014, dry season of 2015) was consistent with the loss of funding for Dioro in the second quarter of 2014 and disappeared when funds again became available in late 2015. The clustering of infection in rural (western) areas of Gambissara was consistent with known rural-urban differences in the prevalence of infection and with the thatched roofs, open eaves and mud walls of houses in rural Gambissara. In contrast, the most intense transmission was in Dangassa, where the only encouraging observation was a lower prevalence of infection in the dry season. Taken together, these results suggest: (a) the transmission of infection was stopped in Madina Fall by eliminating the only known breeding site, (b) the prevalence of infection was reduced in Dioro after financial support became available again for malaria control in the second half of 2015, (c) improvements in housing should improve malaria control by reducing the number of vectors in rural communities such as western Gambissara, and (d) beginning malaria control during the dry season may reduce transmission in hyperendemic areas such as Dangassa. CONCLUSIONS: From a conceptual perspective, testing for spatial, temporal and spatio-temporal clustering based on epidemiologic data permits the generation of hypotheses for the clustering observed and the testing of candidate interventions to confirm or refute those hypotheses.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Análise por Conglomerados , Características da Família , Gâmbia/epidemiologia , Sistemas de Informação Geográfica , Habitação/normas , Humanos , Mali/epidemiologia , Prevalência , População Rural , Estações do Ano , Senegal/epidemiologia , Análise Espacial , Fatores de Tempo , População Urbana
3.
Malar J ; 19(1): 15, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931834

RESUMO

BACKGROUND: Northern Senegal is a zone of very low malaria transmission, with an annual incidence of < 5/1000 inhabitants. This area, where the Senegal National Malaria Control Programme has initiated elimination activities, hosts Fulani, nomadic, pastoralists that spend the dry season in the south where malaria incidence is higher (150-450/1000 inhabitants) and return to the north with the first rains. Previous research demonstrated parasite prevalence of < 1% in this Fulani population upon return from the south, similar to that documented in the north in cross-sectional surveys. METHODS: A modified snowball sampling survey of nomadic pastoralists was conducted in five districts in northern Senegal during September and October 2014. Demographic information and dried blood spots were collected. Multiplex bead-based assays were used to assess antibody responses to merozoite surface protein (MSP-119) antigen of the four primary Plasmodium species, as well as circumsporozoite protein (CSP) and liver stage antigen (LSA-1) of Plasmodium falciparum. RESULTS: In the five study districts, 1472 individuals were enrolled, with a median age of 22 years (range 1 to 80 years). Thirty-two percent of subjects were under 14 years and 57% were male. The overall seroprevalence of P. falciparum MSP-119, CSP and LSA-1 antibodies were 45, 12 and 5%, respectively. Plasmodium falciparum MSP-119 antibody responses increased significantly with age in all study areas, and were significantly higher among males. The highest seroprevalence to P. falciparum antigens was observed in the Kanel district (63%) and the lowest observed in Podor (28%). Low seroprevalence was observed for non-falciparum species in all the study sites: 0.4, 0.7 and 1.8%, respectively, for Plasmodium ovale, Plasmodium vivax and Plasmodium malariae MSP-1. Antibody responses to P. vivax were observed in all study sites except Kanel. CONCLUSION: Prevalence of P. falciparum MSP-119 antibodies and increases by study participant age provided data for low levels of exposure among this transient nomadic population. In addition, antibody responses to P. falciparum short half-life markers (CSP and LSA-1) and non-falciparum species were low. Further investigations are needed to understand the exposure of the Fulani population to P. vivax.


Assuntos
Anticorpos Antiprotozoários/sangue , Imunoglobulina G/sangue , Malária Falciparum/epidemiologia , Plasmodium falciparum/imunologia , Migrantes , Adolescente , Adulto , Idoso , Animais , Anopheles/parasitologia , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Malária Falciparum/diagnóstico , Malária Falciparum/imunologia , Masculino , Microesferas , Pessoa de Meia-Idade , Mosquitos Vetores/parasitologia , Chuva , Estações do Ano , Senegal/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem
4.
Malar J ; 16(1): 413, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29029619

RESUMO

BACKGROUND: Malaria transmission in Senegal is highly stratified, from low in the dry north to moderately high in the moist south. In northern Senegal, along the Senegal River Valley and in the Ferlo semi-desert region, annual incidence is less than five cases per 1000 inhabitants. Many nomadic pastoralists have permanent dwellings in the Ferlo Desert and Senegal River Valley, but spend dry season in the south with their herds, returning north when the rains start, leading to a concern that this population could contribute to ongoing transmission in the north. METHODS: A modified snowball sampling survey was conducted at six sites in northern Senegal to determine the malaria prevention and treatment seeking practices and parasite prevalence among nomadic pastoralists in the Senegal River Valley and the Ferlo Desert. Nomadic pastoralists aged 6 months and older were surveyed during September and October 2014, and data regarding demographics, access to care and preventive measures were collected. Parasite infection was detected using rapid diagnostic tests (RDTs), microscopy (thin and thick smears) and polymerase chain reaction (PCR). Molecular barcodes were determined by high resolution melting (HRM). RESULTS: Of 1800 participants, 61% were male. Sixty-four percent had at least one bed net in the household, and 53% reported using a net the night before. Only 29% had received a net from a mass distribution campaign. Of the 8% (142) who reported having had fever in the last month, 55% sought care, 20% of whom received a diagnostic test, one-third of which (n = 5) were reported to be positive. Parasite prevalence was 0.44% by thick smear and 0.50% by PCR. None of the molecular barcodes identified among the nomadic pastoralists had been previously identified in Senegal. CONCLUSIONS: While access to and utilization of malaria control interventions among nomadic pastoralists was lower than the general population, parasite prevalence was lower than expected and sheds doubt on the perception that they are a source of ongoing transmission in the north. The National Malaria Control Program is making efforts to improve access to malaria prevention and case management for nomadic populations.


Assuntos
Malária , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Migrantes , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criação de Animais Domésticos , Criança , Pré-Escolar , Código de Barras de DNA Taxonômico , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Masculino , Pessoa de Meia-Idade , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Plasmodium/classificação , Prevalência , Senegal/epidemiologia , Migrantes/psicologia , Migrantes/estatística & dados numéricos , Adulto Jovem
5.
Malar J ; 16(1): 9, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049489

RESUMO

BACKGROUND: Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. METHODS: Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. RESULTS: Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. CONCLUSIONS: These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other malaria endemic settings where species besides P. falciparum may be transmitted and overlooked by control or elimination activities.


Assuntos
Malária/epidemiologia , Plasmodium malariae/isolamento & purificação , Plasmodium ovale/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Testes Diagnósticos de Rotina/métodos , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Plasmodium malariae/classificação , Plasmodium malariae/genética , Plasmodium ovale/classificação , Plasmodium ovale/genética , Plasmodium vivax/classificação , Plasmodium vivax/genética , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Senegal/epidemiologia , Sensibilidade e Especificidade , Adulto Jovem
6.
PLoS Med ; 13(11): e1002175, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27875528

RESUMO

BACKGROUND: Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ), given each month during the transmission season, is recommended for children living in areas of the Sahel where malaria transmission is highly seasonal. The recommendation for SMC is currently limited to children under five years of age, but, in many areas of seasonal transmission, the burden in older children may justify extending this age limit. This study was done to determine the effectiveness of SMC in Senegalese children up to ten years of age. METHODS AND FINDINGS: SMC was introduced into three districts over three years in central Senegal using a stepped-wedge cluster-randomised design. A census of the population was undertaken and a surveillance system was established to record all deaths and to record all cases of malaria seen at health facilities. A pharmacovigilance system was put in place to detect adverse drug reactions. Fifty-four health posts were randomised. Nine started implementation of SMC in 2008, 18 in 2009, and a further 18 in 2010, with 9 remaining as controls. In the first year of implementation, SMC was delivered to children aged 3-59 months; the age range was then extended for the latter two years of the study to include children up to 10 years of age. Cluster sample surveys at the end of each transmission season were done to measure coverage of SMC and the prevalence of parasitaemia and anaemia, to monitor molecular markers of drug resistance, and to measure insecticide-treated net (ITN) use. Entomological monitoring and assessment of costs of delivery in each health post and of community attitudes to SMC were also undertaken. About 780,000 treatments were administered over three years. Coverage exceeded 80% each month. Mortality, the primary endpoint, was similar in SMC and control areas (4.6 and 4.5 per 1000 respectively in children under 5 years and 1.3 and 1.2 per 1000 in children 5-9 years of age; the overall mortality rate ratio [SMC: no SMC] was 0.90, 95% CI 0.68-1.2, p = 0.496). A reduction of 60% (95% CI 54%-64%, p < 0.001) in the incidence of malaria cases confirmed by a rapid diagnostic test (RDT) and a reduction of 69% (95% CI 65%-72%, p < 0.001) in the number of treatments for malaria (confirmed and unconfirmed) was observed in children. In areas where SMC was implemented, incidence of confirmed malaria in adults and in children too old to receive SMC was reduced by 26% (95% CI 18%-33%, p < 0.001) and the total number of treatments for malaria (confirmed and unconfirmed) in these older age groups was reduced by 29% (95% CI 21%-35%, p < 0.001). One hundred and twenty-three children were admitted to hospital with a diagnosis of severe malaria, with 64 in control areas and 59 in SMC areas, showing a reduction in the incidence rate of severe disease of 45% (95% CI 5%-68%, p = 0.031). Estimates of the reduction in the prevalence of parasitaemia at the end of the transmission season in SMC areas were 68% (95% CI 35%-85%) p = 0.002 in 2008, 84% (95% CI 58%-94%, p < 0.001) in 2009, and 30% (95% CI -130%-79%, p = 0.56) in 2010. SMC was well tolerated with no serious adverse reactions attributable to SMC drugs. Vomiting was the most commonly reported mild adverse event but was reported in less than 1% of treatments. The average cost of delivery was US$0.50 per child per month, but varied widely depending on the size of the health post. Limitations included the low rate of mortality, which limited our ability to detect an effect on this endpoint. CONCLUSIONS: SMC substantially reduced the incidence of outpatient cases of malaria and of severe malaria in children, but no difference in all-cause mortality was observed. Introduction of SMC was associated with an overall reduction in malaria incidence in untreated age groups. In many areas of Africa with seasonal malaria, there is a substantial burden in older children that could be prevented by SMC. SMC in older children is well tolerated and effective and can contribute to reducing malaria transmission. TRIAL REGISTRATION: ClinicalTrials.gov NCT00712374.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Quimioprevenção/normas , Criança , Pré-Escolar , Combinação de Medicamentos , Humanos , Lactente , Estações do Ano , Senegal
7.
Malar J ; 14: 463, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581562

RESUMO

BACKGROUND: In Senegal, considerable efforts have been made to reduce malaria morbidity and mortality during the last decade. This resulted in a marked decrease of malaria cases. With the decline of malaria cases, transmission has become sparse in most Senegalese health districts. This study investigated malaria hotspots in Keur Soce sites by using geographically-weighted regression. Because of the occurrence of hotspots, spatial modelling of malaria cases could have a considerable effect in disease surveillance. METHODS: This study explored and analysed the spatial relationships between malaria occurrence and socio-economic and environmental factors in small communities in Keur Soce, Senegal, using 6 months passive surveillance. Geographically-weighted regression was used to explore the spatial variability of relationships between malaria incidence or persistence and the selected socio-economic, and human predictors. A model comparison of between ordinary least square and geographically-weighted regression was also explored. Vector dataset (spatial) of the study area by village levels and statistical data (non-spatial) on malaria confirmed cases, socio-economic status (bed net use), population data (size of the household) and environmental factors (temperature, rain fall) were used in this exploratory analysis. ArcMap 10.2 and Stata 11 were used to perform malaria hotspots analysis. RESULTS: From Jun to December, a total of 408 confirmed malaria cases were notified. The explanatory variables-household size, housing materials, sleeping rooms, sheep and distance to breeding site returned significant t values of -0.25, 2.3, 4.39, 1.25 and 2.36, respectively. The OLS global model revealed that it explained about 70 % (adjusted R(2) = 0.70) of the variation in malaria occurrence with AIC = 756.23. The geographically-weighted regression of malaria hotspots resulted in coefficient intercept ranging from 1.89 to 6.22 with a median of 3.5. Large positive values are distributed mainly in the southeast of the district where hotspots are more accurate while low values are mainly found in the centre and in the north. CONCLUSION: Geographically-weighted regression and OLS showed important risks factors of malaria hotspots in Keur Soce. The outputs of such models can be a useful tool to understand occurrence of malaria hotspots in Senegal. An understanding of geographical variation and determination of the core areas of the disease may provide an explanation regarding possible proximal and distal contributors to malaria elimination in Senegal.


Assuntos
Malária/epidemiologia , Topografia Médica , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Demografia , Meio Ambiente , Monitoramento Epidemiológico , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Senegal/epidemiologia , Fatores Socioeconômicos , Regressão Espacial , Adulto Jovem
8.
Malar J ; 13: 453, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25418476

RESUMO

BACKGROUND: Malaria is major public health problem in Senegal. In some parts of the country, it occurs almost permanently with a seasonal increase during the rainy season. There is evidence to suggest that the prevalence of malaria in Senegal has decreased considerably during the past few years. Recent data from the Senegalese National Malaria Control Programme (NMCP) indicates that the number of malaria cases decrease from 1,500,000 in 2006 to 174,339 in 2010. With the decline of malaria morbidity in Senegal, the characterization of the new epidemiological profile of this disease is crucial for public health decision makers. METHODS: SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using confirmed malaria cases in 74 villages. ArcMAp was used to map malaria hotspots. Logistic regression was used to investigate risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. RESULTS: A total of 1,614 individuals in 440 randomly selected households were enrolled. The overall malaria prevalence was 12%. The malaria prevalence during the study period varied from less than 2% to more than 25% from one village to another. The results showed also that rooms located between 50 m to 100 m away from livestock holding place [adjusted O.R = 0.7, P = 0.044, 95% C.I (1.02 - 7.42)], bed net use [adjusted O.R = 1.2, P = 0.024, 95% C.I (1.02 -1.48)], are good predictors for malaria hotspots in the Keur Soce health and demographic surveillance site. The socio economic status of the household also predicted on hotspots patterns. The less poor household are 30% less likely to be classified as malaria hotspots area compared to the poorest household [adjusted O.R = 0.7, P = 0.014, 95% C.I (0.47 - 0.91)]. CONCLUSION: The study investigated risk factors for malaria hotspots in small communities in the Keur Soce site. The result showed considerable variation of malaria prevalence between villages which cannot be detected in aggregated data. The data presented in this paper are the first step to understanding malaria in the Keur Soce site from a micro-geographic perspective.


Assuntos
Malária/epidemiologia , Topografia Médica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , População Rural , Senegal/epidemiologia , Análise Espaço-Temporal , Adulto Jovem
9.
Nat Commun ; 15(1): 747, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272885

RESUMO

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.


Assuntos
Borrelia , Malária , Plasmodium , Humanos , Senegal/epidemiologia , Estudos Transversais , Malária/diagnóstico , Malária/epidemiologia , Febre/epidemiologia , Borrelia/genética
10.
BMC Res Notes ; 17(1): 68, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461329

RESUMO

BACKGROUND: Following WHO guidelines, microscopy is the gold standard for malaria diagnosis in endemic countries. The Parasitology-Mycology laboratory (LPM) is the National Reference Laboratory and is currently undergoing ISO 15189 accreditation. In this context, we assessed the performance of the laboratory by confirming the reliability and the accuracy of results obtained in accordance with the requirements of the ISO 15189 standards. This study aimed to verify the method of microscopic diagnosis of malaria at the LPM, in the Aristide Le Dantec hospital (HALD) in Dakar, Senegal. METHODS: This is a validation/verification study conducted from June to August 2020. Twenty (20) microscopic slides of thick/thin blood smear with known parasite densities (PD) selected from the Cheick Anta Diop University malaria slide bank in Dakar were used for this assessment. Six (6) were used to assess microscopists' ability to determine PD and fourteen (14) slides were used for detection (positive vs negative) and identification of parasites. Four (4) LPM-HALD microscopists read and recorded their results on prepared sheets. Data analysis was done with Microsoft Excel 2010 software. RESULTS: A minimum threshold of 50% concordance was used for comparison. Of the twenty (20) slides read, 100% concordance was obtained on eight (8) detection (positive vs negative) slides. Four (4) out of the six (6) parasite density evaluation slides obtained a concordance of less than 50%. Thirteen (13) out of the fourteen (14) identification slides obtained a concordance greater than 50%. Only one (1) identification slide obtained zero agreement from the microscopists. For species identification a concordance greater than 80% was noted and the microscopists obtained scores between 0.20 and 0.4 on a scale of 0 to 1 for parasite density reading. The microscopists obtained 100% precision, sensitivity, specificity and both negative and positive predictive values. CONCLUSION: This work demonstrated that the microscopic method of malaria diagnosis used in the LPM/HALD is in accordance with the requirements of WHO and ISO 15189. Further training of microscopists may be needed to maintain competency.


Assuntos
Malária , Humanos , Senegal , Reprodutibilidade dos Testes , Malária/diagnóstico , Malária/parasitologia , Laboratórios , Hospitais Universitários
11.
Malar J ; 12: 137, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23617576

RESUMO

BACKGROUND: In sub-Saharan Africa, malaria is the leading cause of morbidity and mortality especially in children. In Senegal, seasonal malaria chemoprevention (SMC) previously referred to as intermittent preventive treatment in children (IPTc) is a new strategy for malaria control in areas of high seasonal transmission. An effectiveness study of SMC, using sulphadoxine-pyrimethamine (SP) plus amodiaquine (AQ), was conducted in central Senegal from 2008 to 2010 to obtain information about safety, feasibility of delivery, and cost effectiveness of SMC. Here are report the effect of SMC delivery on the prevalence of markers of resistance to SP and AQ. METHODS: This study was conducted in three health districts in Senegal with 54 health posts with a gradual introduction of SMC. Three administrations of the combination AQ + SP were made during the months of September, October and November of each year in children aged less than 10 years living in the area. Children were surveyed in December of each year and samples (filter paper and thick films) were made in 2008, 2009 and 2010. The prevalence of mutations in the pfdhfr, pfdhps, pfmdr1 and pfcrt genes was investigated by sequencing and RTPCR in samples positive by microscopy for Plasmodium falciparum. RESULTS: Mutations at codon 540 of pfdhps and codon 164 of pfdhfr were not detected in the study. Among children with parasitaemia at the end of the transmission seasons, the CVIET haplotypes of pfcrt and the 86Y polymorphism of pfmdr1 were more common among those that had received SMC, but the number of infections detected was very low and confidence intervals were wide. The overall prevalence of these mutations was lower in SMC areas than in control areas, reflecting the lower prevalence of parasitaemia in areas where SMC was delivered. CONCLUSION: The sensitivity of P. falciparum to SMC drugs should be regularly monitored in areas deploying this intervention. Overall the prevalence of genotypes associated with resistance to either SP or AQ was lower in SMC areas due to the reduced number of parasitaemia individuals.


Assuntos
Antimaláricos/farmacologia , Quimioprevenção/métodos , Resistência a Medicamentos , Marcadores Genéticos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Combinação de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Taxa de Mutação , Plasmodium falciparum/isolamento & purificação , Prevalência , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Senegal/epidemiologia , Sulfadoxina/farmacologia , Sulfadoxina/uso terapêutico
12.
J Parasitol ; 109(6): 580-587, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104629

RESUMO

Urinary and intestinal schistosomiasis are endemic in Senegal, with prevalence heterogeneous throughout the country. Because of their way of life, nomadic pastoralists are not typically included in epidemiological surveys, and data on the prevalence of schistosomiasis in Senegalese nomadic populations are largely non-existent. The purpose of this study was to determine the seroprevalence of schistosomiasis in Senegalese nomadic pastoralists. A modified snowball sampling survey was conducted among 1,467 nomadic pastoralists aged 6 mo and older in 5 districts in northern Senegal. Dried blood spots from participants of all ages and data regarding demographics were collected to assess IgG antibody responses against Schistosoma mansoni soluble egg antigen (SEA) using a bead-based multiplex assay. Out of 1,467 study subjects, 1,464 (99.8%) provided IgG serological data that cleared quality assurance. Of the participants with appropriate data, 56.6% were male, the median age was 22 yr, and 31.6% were under 15 yr of age. The overall anti-SEA IgG seroprevalence was 19.1% (95% confidence interval [CI]: 17.1-21.1%) with the highest estimates observed in Dagana (35.9%) and the lowest observed in Podor nomadic groups (3.4%). Antibody responses increased significantly with age except for the oldest age groups (>40 yr of age), which saw lower levels of antibody response compared to younger adults. When controlling for age and location by multivariate regression, the male sex was associated with a 2-fold greater odds of anti-SEA IgG seropositivity (aPOR: 2.0; 95% CI: 1.5-2.7). Serosurveys for anti-SEA IgG among nomadic peoples in northern Senegal found a substantial percentage of individuals with evidence for current or previous Schistosoma spp. infection with the highest levels of exposure in the district adjacent to the Diama dam along the Senegal River. With IgG prevalence increased by age except in the older adults, and the male sex significantly associated with seropositivity, these data point toward sex-associated behavioral practices and human environmental modification as risk factors for Schistosoma exposure.


Assuntos
Schistosoma mansoni , Esquistossomose mansoni , Animais , Humanos , Masculino , Idoso , Adulto Jovem , Adulto , Feminino , Senegal/epidemiologia , Estudos Soroepidemiológicos , Esquistossomose mansoni/epidemiologia , Imunoglobulina G
13.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662407

RESUMO

The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata from febrile patients and healthy controls in a low malaria burden area. Using 16S and unbiased sequencing, we detected viral, bacterial, or eukaryotic pathogens in 29% of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15% and 3.7% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model to distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs. These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance.

14.
medRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163114

RESUMO

Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. We analyzed data from two decades (2000-2020) of continuous molecular surveillance of P. falciparum parasite strains in Senegal to determine how historical changes in drug administration policy may have affected parasite evolution. We profiled several known drug resistance markers and their surrounding haplotypes using a combination of single nucleotide polymorphism (SNP) molecular surveillance and whole-genome sequence (WGS) based population genomics. We observed rapid changes in drug resistance markers associated with the withdrawal of chloroquine and introduction of sulfadoxine-pyrimethamine in 2003. We also observed a rapid increase in Pfcrt K76T and decline in Pfdhps A437G starting in 2014, which we hypothesize may reflect changes in resistance or fitness caused by seasonal malaria chemoprevention (SMC). Parasite populations evolve rapidly in response to drug use, and SMC preventive efficacy should be closely monitored.

15.
Res Sq ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961451

RESUMO

Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programs (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. Here, we examined parasites from 3,147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, we constructed a series of Poisson generalized linear mixed-effects models to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. We compared the model-predicted incidence with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (<10/1000/annual [‰]). When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence >10 ‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was <10 ‰, we found that many of the correlations between parasite genetics and incidence were reversed, which we hypothesize reflects the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.

16.
Nat Commun ; 14(1): 7268, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949851

RESUMO

We here analyze data from the first year of an ongoing nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal. The analysis is based on 1097 samples collected at health facilities during passive malaria case detection in 2019; it provides a baseline for analyzing parasite genetic metrics as they vary over time and geographic space. The study's goal was to identify genetic metrics that were informative about transmission intensity and other aspects of transmission dynamics, focusing on measures of genetic relatedness between parasites. We found the best genetic proxy for local malaria incidence to be the proportion of polygenomic infections (those with multiple genetically distinct parasites), although this relationship broke down at low incidence. The proportion of related parasites was less correlated with incidence while local genetic diversity was uninformative. The type of relatedness could discriminate local transmission patterns: two nearby areas had similarly high fractions of relatives, but one was dominated by clones and the other by outcrossed relatives. Throughout Senegal, 58% of related parasites belonged to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci and at one novel locus, reflective of ongoing selection pressure.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Senegal/epidemiologia , Malária/epidemiologia , Plasmodium falciparum/genética
17.
medRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37131838

RESUMO

Parasite genetic surveillance has the potential to play an important role in malaria control. We describe here an analysis of data from the first year of an ongoing, nationwide program of genetic surveillance of Plasmodium falciparum parasites in Senegal, intended to provide actionable information for malaria control efforts. Looking for a good proxy for local malaria incidence, we found that the best predictor was the proportion of polygenomic infections (those with multiple genetically distinct parasites), although that relationship broke down in very low incidence settings (r = 0.77 overall). The proportion of closely related parasites in a site was more weakly correlated ( r = -0.44) with incidence while the local genetic diversity was uninformative. Study of related parasites indicated their potential for discriminating local transmission patterns: two nearby study areas had similarly high fractions of relatives, but one area was dominated by clones and the other by outcrossed relatives. Throughout the country, 58% of related parasites proved to belong to a single network of relatives, within which parasites were enriched for shared haplotypes at known and suspected drug resistance loci as well as at one novel locus, reflective of ongoing selection pressure.

18.
PNAS Nexus ; 1(4): pgac187, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246152

RESUMO

Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high transmission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the transmission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite transmission intensity. Here, we describe a new metric, R H, that utilizes the correlation in allelic state (heterozygosity) within polygenomic infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. R H is flexible and can be applied to any type of genetic data. As a proof of concept, we used R H to quantify polygenomic relatedness and estimate cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to 53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infections to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities.

19.
Sci Rep ; 11(1): 10321, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990632

RESUMO

Dengue virus is a major and rapidly growing public health concern in tropic and subtropic regions across the globe. In late 2018, Senegal experienced its largest dengue virus outbreak to date, covering several regions. However, little is known about the genetic diversity of dengue virus (DENV) in Senegal. Here we report complete viral genomes from 17 previously undetected DENV cases from the city of Thiès. In total we identified 19 cases of DENV in a cohort of 198 individuals with fever collected in October and November 2018. We detected 3 co-circulating serotypes; DENV 3 was the most frequent accounting for 11/17 sequences (65%), 4 (23%) were DENV2 and 2 (12%) were DENV1. Sequences were most similar to recent sequences from West Africa, suggesting ongoing local circulation of viral populations; however, detailed inference is limited by the scarcity of available genomic data. We did not find clear associations with reported clinical signs or symptoms, highlighting the importance of testing for diagnosing febrile diseases. Overall, these findings expand the known range of DENV in Senegal, and underscore the need for better genomic characterization of DENV in West Africa.


Assuntos
Vírus da Dengue/genética , Dengue/virologia , Surtos de Doenças/estatística & dados numéricos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , DNA Viral/isolamento & purificação , Dengue/sangue , Dengue/diagnóstico , Dengue/epidemiologia , Vírus da Dengue/isolamento & purificação , Feminino , Genoma Viral , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , Senegal/epidemiologia , Sorogrupo , Adulto Jovem
20.
Viruses ; 13(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34452470

RESUMO

While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE-detected in the Yoruba population of Nigeria-conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the "emerging" nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz's critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts.


Assuntos
Planejamento em Desastres , Febre Lassa/epidemiologia , Vírus Lassa/fisiologia , África Ocidental/epidemiologia , Planejamento em Desastres/métodos , Humanos , Febre Lassa/genética , Febre Lassa/prevenção & controle , Febre Lassa/virologia , Vírus Lassa/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Nigéria/epidemiologia , Pandemias , Polimorfismo Genético , Receptores Virais/genética , Receptores Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA