Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2311854121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319971

RESUMO

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular circadian rhythms in noncancerous and cancerous human breast tissues and their clinical relevance are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For noncancerous breast tissue, inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of luminal A samples exhibit continued, albeit dampened and reprogrammed rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude luminal A tumors. Surprisingly, patients with high-magnitude tumors had reduced 5-y survival. Correspondingly, 3D luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.


Assuntos
Neoplasias da Mama , Relógios Circadianos , Humanos , Feminino , Neoplasias da Mama/patologia , Relógios Circadianos/genética , Ritmo Circadiano , Estrogênios , Prognóstico
2.
PLoS Genet ; 16(4): e1008729, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32352975

RESUMO

Evolutionarily conserved circadian clocks generate 24-hour rhythms in physiology and behaviour that adapt organisms to their daily and seasonal environments. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the principal co-ordinator of the cell-autonomous clocks distributed across all major tissues. The importance of robust daily rhythms is highlighted by experimental and epidemiological associations between circadian disruption and human diseases. BMAL1 (a bHLH-PAS domain-containing transcription factor) is the master positive regulator within the transcriptional-translational feedback loops (TTFLs) that cell-autonomously define circadian time. It drives transcription of the negative regulators Period and Cryptochrome alongside numerous clock output genes, and thereby powers circadian time-keeping. Because deletion of Bmal1 alone is sufficient to eliminate circadian rhythms in cells and the whole animal it has been widely used as a model for molecular disruption of circadian rhythms, revealing essential, tissue-specific roles of BMAL1 in, for example, the brain, liver and the musculoskeletal system. Moreover, BMAL1 has clock-independent functions that influence ageing and protein translation. Despite the essential role of BMAL1 in circadian time-keeping, direct measures of its intra-cellular behaviour are still lacking. To fill this knowledge-gap, we used CRISPR Cas9 to generate a mouse expressing a knock-in fluorescent fusion of endogenous BMAL1 protein (Venus::BMAL1) for quantitative live imaging in physiological settings. The Bmal1Venus mouse model enabled us to visualise and quantify the daily behaviour of this core clock factor in central (SCN) and peripheral clocks, with single-cell resolution that revealed its circadian expression, anti-phasic to negative regulators, nuclear-cytoplasmic mobility and molecular abundance.


Assuntos
Fatores de Transcrição ARNTL/genética , Envelhecimento/genética , Ritmo Circadiano , Fatores de Transcrição ARNTL/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Encéfalo/embriologia , Células Cultivadas , Retroalimentação Fisiológica , Fígado/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única/métodos
3.
Ann Rheum Dis ; 80(7): 828-839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33397731

RESUMO

Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.


Assuntos
Ritmo Circadiano/fisiologia , Disco Intervertebral/fisiologia , Envelhecimento/fisiologia , Animais , Homeostase/fisiologia , Humanos
4.
Environ Microbiol ; 20(7): 2354-2369, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29521480

RESUMO

Cyanobacteria were the first organisms ever to perform oxygenic photosynthesis and still significantly contribute to primary production on a global scale. To assure the proper functioning of their primary metabolism and cell homeostasis, cyanobacteria must rely on efficient transport systems to cross their multilayered cell envelope. However, cyanobacterial secretion mechanisms remain largely unknown. Here, we report on the identification of 11 putative inner membrane translocase components of TolC-mediated secretion in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Gene-inactivation of each of the candidate genes followed by a comprehensive phenotypic characterization allowed to link specific protein components to the processes of protein export (as part of the type I secretion system) and drug efflux (part of the resistance-division-nodulation efflux pumps). In addition, mutants in genes sll0141, sll0180 and slr0369 exhibited alterations in pilin glycosylation, but pili structures could still be observed by transmission electron microscopy. By studying the release of outer membrane vesicles (OMVs), an alternative secretion route, on mutants with impaired secretory functions we suggest that the hyper-vesiculating phenotype of the TolC-deficient mutant is related to cell envelope stress management. Altogether, these findings highlight how both classical (TolC-mediated) and nonclassical (OMVs-mediated) secretion systems are crucial for cyanobacterial cell homeostasis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Synechocystis/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Fotossíntese , Sistemas de Translocação de Proteínas
5.
Nat Commun ; 14(1): 7237, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963878

RESUMO

Daily rhythms in mammalian behaviour and physiology are generated by a multi-oscillator circadian system entrained through environmental cues (e.g. light and feeding). The presence of tissue niche-dependent physiological time cues has been proposed, allowing tissues the ability of circadian phase adjustment based on local signals. However, to date, such stimuli have remained elusive. Here we show that daily patterns of mechanical loading and associated osmotic challenge within physiological ranges reset circadian clock phase and amplitude in cartilage and intervertebral disc tissues in vivo and in tissue explant cultures. Hyperosmolarity (but not hypo-osmolarity) resets clocks in young and ageing skeletal tissues and induce genome-wide expression of rhythmic genes in cells. Mechanistically, RNAseq and biochemical analysis revealed the PLD2-mTORC2-AKT-GSK3ß axis as a convergent pathway for both in vivo loading and hyperosmolarity-induced clock changes. These results reveal diurnal patterns of mechanical loading and consequent daily oscillations in osmolarity as a bona fide tissue niche-specific time cue to maintain skeletal circadian rhythms in sync.


Assuntos
Relógios Circadianos , Animais , Relógios Circadianos/fisiologia , Sinais (Psicologia) , Ritmo Circadiano/fisiologia , Mamíferos/fisiologia , Tempo
6.
bioRxiv ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37293090

RESUMO

Studies in shift workers and model organisms link circadian disruption to breast cancer. However, molecular rhythms in non-cancerous and cancerous human breast tissues are largely unknown. We reconstructed rhythms informatically, integrating locally collected, time-stamped biopsies with public datasets. For non-cancerous tissue, the inferred order of core-circadian genes matches established physiology. Inflammatory, epithelial-mesenchymal transition (EMT), and estrogen responsiveness pathways show circadian modulation. Among tumors, clock correlation analysis demonstrates subtype-specific changes in circadian organization. Luminal A organoids and informatic ordering of Luminal A samples exhibit continued, albeit disrupted rhythms. However, CYCLOPS magnitude, a measure of global rhythm strength, varied widely among Luminal A samples. Cycling of EMT pathway genes was markedly increased in high-magnitude Luminal A tumors. Patients with high-magnitude tumors had reduced 5-year survival. Correspondingly, 3D Luminal A cultures show reduced invasion following molecular clock disruption. This study links subtype-specific circadian disruption in breast cancer to EMT, metastatic potential, and prognosis.

7.
J Endocrinol ; 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31470415

RESUMO

The circadian system in mammals is responsible for the temporal coordination of multiple physiological and behavioural processes that are necessary for homeostasis. In the skeleton, it has long been known that metabolic functions of chondrocytes, osteoblasts and osteoclasts exhibit intrinsic circadian rhythms. In addition, results from animal models reveal a close connection between the disruption of circadian rhythms and skeletal disorders such as rheumatoid arthritis, osteoarthritis and osteoporosis. In this review, we summarise the latest insights into the genetic and biochemical mechanisms linking cartilage and bone physiology to the circadian clock system. We also discuss how this knowledge can be utilised to improve human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA