Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Crit Care Med ; 48(2): e123-e132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31939811

RESUMO

OBJECTIVES: Trauma predisposes to systemic sterile inflammation (systemic inflammatory response syndrome) as well as infection, but the mechanisms linking injury to infection are poorly understood. Mitochondrial debris contains formyl peptides. These bind formyl peptide receptor-1, trafficking neutrophils to wounds, initiating systemic inflammatory response syndrome, and wound healing. Bacterial formyl peptides, however, also attract neutrophils via formyl peptide receptor-1. Thus, mitochondrial formyl peptides might suppress neutrophils antimicrobial function. Also, formyl peptide receptor-1 blockade used to mitigate systemic inflammatory response syndrome might predispose to sepsis. We examined how mitochondrial formyl peptides impact neutrophils functions contributing to antimicrobial responses and how formyl peptide receptor-1 antagonists affect those functions. DESIGN: Prospective study of human and murine neutrophils and clinical cohort analysis. SETTING: University research laboratory and level 1 trauma center. PATIENTS: Trauma patients, volunteer controls. ANIMAL SUBJECTS: C57Bl/6, formyl peptide receptor-1, and formyl peptide receptor-2 knockout mice. INTERVENTIONS: Human and murine neutrophils functions were activated with autologous mitochondrial debris, mitochondrial formyl peptides, or bacterial formyl peptides followed by chemokines or leukotrienes. The experiments were repeated using formyl peptide receptor-1 antagonist cyclosporin H, "designer" human formyl peptide receptor-1 antagonists (POL7178 and POL7200), or anti-formyl peptide receptor-1 antibodies. Mouse injury/lung infection model was used to evaluate effect of formyl peptide receptor-1 inhibition. MEASUREMENTS AND MAIN RESULTS: Human neutrophils cytosolic calcium, chemotaxis, reactive oxygen species production, and phagocytosis were studied before and after exposure to mitochondrial debris, mitochondrial formyl peptides, and bacterial formyl peptides. Mitochondrial formyl peptide and bacterial formyl peptides had similar effects on neutrophils. Responses to chemokines and leukotrienes were suppressed by prior exposure to formyl peptides. POL7200 and POL7178 were specific antagonists of human formyl peptide receptor-1 and more effective than cyclosporin H or anti-formyl peptide receptor-1 antibodies. Formyl peptides inhibited mouse neutrophils responses to chemokines only if formyl peptide receptor-1 was present. Formyl peptide receptor-1 blockade did not inhibit neutrophils bacterial phagocytosis or reactive oxygen species production. Cyclosporin H increased bacterial clearance in lungs after injury. CONCLUSIONS: Formyl peptides both activate and desensitize neutrophils. Formyl peptide receptor-1 blockade prevents desensitization, potentially both diminishing systemic inflammatory response syndrome and protecting the host against secondary infection after tissue trauma or primary infection.


Assuntos
Proteínas Mitocondriais/imunologia , Ativação de Neutrófilo/imunologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Animais , Ciclosporina/farmacologia , Humanos , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções Respiratórias/fisiopatologia
2.
Cell Mol Immunol ; 1(1): 50-6, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16212921

RESUMO

Resveratrol (3,5,4'-trihydroxystilbene) (RV) is a constituent of grape seeds with anti-inflammatory and anti-oxidant activities. In this study, we examined the capacity of RV to modulate the function of G protein-coupled chemoattractant receptors, which play important roles in inflammation and immune responses. RV, over a non-cytotoxic concentration range, inhibited chemotactic and calcium mobilization responses of phagocytic cells to selected chemoattractants. At low micromolar concentrations, RV potently reduced superoxide anion production by phagocytic leukocytes in response to the bacterial chemotactic peptide fMLF, a high affinity ligand for formylpeptide receptor FPR, and A beta42, an Alzheimer's disease-associated peptide and a ligand for the FPR variant FPRL1. In addition, RV reduced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and the activation of nuclear factor NF-kappaB induced by formylpeptide receptor agonists. These results suggest that the inhibition of the function of chemoattractant receptors may contribute to the anti-inflammatory properties of RV. Thus, RV may be therapeutically promising for diseases in which activation of formylpeptide receptors contributes to the pathogenic processes.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Leucócitos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Receptores de Formil Peptídeo/metabolismo , Estilbenos/farmacologia , Vitis/química , Cálcio/metabolismo , Quimiocina CXCL12 , Quimiocinas CXC/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia de Leucócito/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-8/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Peptídeos/metabolismo , Fagócitos/citologia , Fagócitos/metabolismo , Resveratrol , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA