Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genes Dev ; 31(3): 247-259, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223311

RESUMO

Tumor infiltrated type II (M2) macrophages promote tumorigenesis by suppressing immune clearance, promoting proliferation, and stimulating angiogenesis. Interestingly, macrophages were also found to enrich in small foci of altered hepatocytes containing liver tumor-initiating cells (TICs). However, whether and how TICs specifically recruit macrophages and the function of these macrophages in tumor initiation remain unknown due to technical difficulties. In this study, by generating genetically defined liver TICs, we demonstrate that TICs actively recruit M2 macrophages from as early as the single-cell stage. Elimination of TIC-associated macrophages (TICAMs) abolishes tumorigenesis in a manner dependent on the immune system. Mechanistically, activation of the Hippo pathway effector Yes-associated protein (YAP) underlies macrophage recruitment by TICs. These results demonstrate for the first time that macrophages play a decisive role in the survival of single TICs in vivo and provide a proof of principle for TIC elimination by targeting YAP or M2 macrophages.


Assuntos
Carcinoma Hepatocelular/imunologia , Transformação Celular Neoplásica/imunologia , Hepatócitos/imunologia , Neoplasias Hepáticas/imunologia , Macrófagos/imunologia , Células-Tronco Neoplásicas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Comunicação Celular/imunologia , Proteínas de Ciclo Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Fator de Crescimento de Hepatócito/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Proteínas de Homeodomínio/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Células-Tronco Neoplásicas/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinase 3 , Proteína Supressora de Tumor p53/fisiologia , Proteínas de Sinalização YAP
2.
Biochem Biophys Res Commun ; 494(1-2): 263-269, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29024631

RESUMO

Autophagy has attracted a great deal of interest in tumour therapy research in recent years. However, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, on autophagy remains poorly understood in human lung cells. In the present study, we have investigated the anticancer effects of luteoloside on non-small cell lung cancer (NSCLC) cells and demonstrated that luteoloside effectively inhibited cancer cell proliferation, inducing G0/G1 phase arrest associated with reduced expression of CyclinE, CyclinD1 and CDK4; we further found that treatment with luteoloside did not strongly result in apoptotic cell death in NSCLC (A549 and H292) cells. Interestingly, luteoloside induced autophagy in lung cancer cells, which was correlated with the formation of autophagic vacuoles, breakdown of p62, and the overexpression of Beclin-1 and LC3-II, but not in a human bronchial epithelial cell line (BEAS-2B). Notably, pretreatment of cancer cells with 3-MA, an autophagy inhibitor, protected against autophagy and promoted cell viability but not apoptosis. To further clarify whether luteoloside-induced autophagy depended on the PI3K/AKT/mTOR/p70S6K signalling pathway, a major autophagy-suppressive cascade, cells were treated with a combination of AKT inhibitor (LY294002) and mTOR inhibitor (Rap). These results demonstrated that luteoloside induced autophagy in lung cancer cell lines by inhibiting the pathway at p-Akt (Ser473), p-mTOR and p-p70S6K (Thr389). Moreover, we observed that luteoloside-induced cell autophagy was correlated with production of reactive oxygen species (ROS). NAC-mediated protection against ROS clearly implicated ROS in the activation of autophagy and cell death. In addition, the results showed that ROS served as an upstream effector of the PI3K/AKT/mTOR/p70S6K pathway. Taken together, the present study provides new insights into the molecular mechanisms underlying luteoloside-mediated cell death in NSCLC cells and supports luteoloside as a potential anti-cancer agent for targeting NSCLC through the induction of autophagy, inhibition of proliferation and PI3K/AKT/mTOR/p70S6K signalling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glucosídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Luteolina/farmacologia , Células A549 , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
3.
BMC Cancer ; 16(1): 742, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27654866

RESUMO

BACKGROUND: Bicyclol, a novel synthetic antihepatitis drug, is widely known to protect against liver injury. However, few reports have focused on the possible effect of bicyclol on anti-proliferation and autophagy induction in cancer cells, particularly hepatocellular carcinoma cells. METHODS: In this study, we investigated the antitumor efficacy of Bicyclol in HepG2 cells and the mechanism of cell growth inhibition. Cell proliferation was analyzed by MTT assay, and the cell cycle and apoptosis were assessed by flow cytometry. And we transfected the cells with the GFP-RFP-LC3 vector to detect the autophagy flux in the cells. Mechanisms of bicyclol-induced cell growth inhibition were probed by western blot analysis. RESULTS: Bicyclol effectively inhibited HepG2 cell proliferation in a dose- and time-dependent manner. In addition, we found that bicyclol inhibited cell cycle progression at G1 phase and induced autophagy in HepG2 cells, which implied that the significant decrease in cell proliferation was mainly induced by autophagy and inhibition of cell proliferation. Furthermore, western blot showed that bicyclol inhibited phosphorylation of Akt and ERK, down-regulated the expressions of cyclin D1, cyclin E2, CDK2, CDK4, p-Rb and p-mTOR. Moreover, AKT or ERK knockdown by siRNA enhanced bicyclol-induced autophagy and inhibition of cell proliferation. CONCLUSION: These results suggest that bicyclol has potent anti-proliferative activity against malignant human hepatoma cells via modulation of the PI3K/AKT pathway and the Ras/Raf/MEK/ERK pathway, and indicate that bicyclol is a potential liver cancer drug worthy of further research and development.

4.
Cell Biol Int ; 40(3): 289-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26609913

RESUMO

Costunolide is an active sesquiterpene lactone derived from many herbal medicines. It has a broad spectrum of bioactivities, including anti-inflammatory and potential anti-tumor effects. The aims of the present study were to evaluate the inhibitory effects of costunolide on A549 cell growth and to explore the underlying molecular mechanisms. Annexin V-FITC/PI flow cytometry analysis revealed that costunolide induced apoptosis. To study the mechanism, we found that costunolide exposure activated the unfolded protein response (UPR) signaling pathways, as shown by the up-regulation of GRP78 and IRE1α and the activation of ASK1 and JNK. Meanwhile, siRNA knockdown of IRE1α significantly attenuated costunolide-induced apoptosis and partly restored the mitochondrial membrane potential. ER stress-activated JNK phosphorylated Bcl-2 at Ser70, which changes the anti-apoptotic function of Bcl-2, resulting in mitochondrial dysfunction and leading to mitochondrial activation of apoptosis. Furthermore, costunolide induced ROS generation, while the antioxidant N-acetyl cysteine (NAC) effectively blocked ER stress and apoptosis activation, suggesting that ROS acts as an upstream signaling molecule in triggering ER stress and mitochondrial apoptotic pathways. Taken together, our research demonstrates that costunolide exhibits its anti-tumor activity though inducing apoptosis, which is mediated by ER stress. We further confirm that Bcl-2 is a key molecule connecting the ER stress and mitochondrial pathways.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/toxicidade , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
Cell Biol Int ; 40(7): 770-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27079177

RESUMO

Oleanolic acid (OA), a plant-derived pentacyclic terpenoid, is known to have hepatoprotective effects. In this study, we found that OA induced autophagic cell death in multiple human gastric cancer cell lines. Moreover, OA-induced autophagy was shown for the first time in human gastric cancer cells, evidenced by the formation of GFP-RFP-LC3 puncta and autophagosomes. OA suppressed phospho-mTOR through inhibition of the PI3 K/AKT and ERK/p38 MAPK signalling pathways and through activation of the AMPK signalling pathway. Furthermore, we found that OA-induced cytotoxicity and autophagy could be blocked by the autophagy inhibitor 3-methyladenine or via siRNA targeting Beclin-1. Our in vivo research showed that OA delayed the formation of MGC-803 tumours in an autophagy-dependent manner. These results reveal a novel mechanism for OA in gastric cancer cells and suggest that OA could be a novel agent in the treatment of gastric cancer.


Assuntos
Ácido Oleanólico/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Linhagem Celular Tumoral , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochem Biophys Res Commun ; 441(2): 519-24, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24383086

RESUMO

Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge. In the present study, we revealed that sarsasapogenin exhibited antitumor activity by inducing apoptosis in vitro as determined by Hoechst staining analysis and double staining of Annexin V-FITC/PI. In addition, cell cycle arrest in G2/M phase was observed in sarsasapogenin-treated HeLa cells. Moreover, the results revealed that perturbations in the mitochondrial membrane were associated with the deregulation of the Bax/Bcl-2 ratio which led to the upregulation of cytochrome c, followed by activation of caspases. Meanwhile, treatment of sarsasapogenin also activated Unfolded Protein Response (UPR) signaling pathways and these changes were accompanied by increased expression of CHOP. Salubrinal (Sal), a selective inhibitor of endoplasmic reticulum (ER) stress, partially abrogated the sarsasapogenin-related cell death. Furthermore, sarsasapogenin provoked the generation of reactive oxygen species, while the antioxidant N-acetyl cysteine (NAC) effectively blocked the activation of ER stress and apoptosis, suggesting that sarsasapogenin-induced reactive oxygen species is an early event that triggers ER stress mitochondrial apoptotic pathways. Taken together, the results demonstrate that sarsasapogenin exerts its antitumor activity through both reactive oxygen species (ROS)-mediate mitochondrial dysfunction and ER stress cell death.


Assuntos
Antineoplásicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/fisiologia , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espirostanos/farmacologia , Neoplasias do Colo do Útero/metabolismo , Anemarrhena/química , Pontos de Checagem do Ciclo Celular , Cinamatos/farmacologia , Citocromos c/biossíntese , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia , Fator de Transcrição CHOP/biossíntese , Resposta a Proteínas não Dobradas , Neoplasias do Colo do Útero/patologia , Proteína X Associada a bcl-2/biossíntese
7.
Biochem Biophys Res Commun ; 431(2): 169-75, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23313479

RESUMO

Nutlin3, a non-genotoxic agonist of p53, is currently in phase II clinical trials for cancer treatment. However, its effects on normal tissues and cell types remain largely to be determined. Drugs that can selectively target cancer cells as well as cooperate with the p53 pathway are thus greatly needed. Iron-superoxide dismutase (Fe-SOD) is a potential candidate as it selectively targets cancer cells by eliminating the abnormally high levels of reactive oxygen species (ROS) in cancer cells; it also inhibits cancer cell growth by induction of p27. Here, we show evidence that modulating redox and ROS homeostasis cooperates with Nutlin3 to selectively inhibit cancer cells in vitro and in vivo. Co-treatment of Fe-SOD and Nutlin3 showed synergistic inhibition on cancer cells in vitro, and the induction of p27 appeared to be involved. No effects were observed on normal cells. In addition, such co-treatment further exhibited synergistic inhibition on tumor growth in vivo in a murine B16 xenograft model, while the individual treatments only achieved very limited inhibition. Thus, Fe-SOD cooperated with Nutlin3 to selectively inhibit cancer cells in vitro and in vivo.


Assuntos
Imidazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Piperazinas/administração & dosagem , Superóxido Dismutase/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Sinergismo Farmacológico , Feminino , Células Hep G2 , Humanos , Lipossomos , Células MCF-7 , Melanoma Experimental/tratamento farmacológico , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 42(5): 504-10, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24167130

RESUMO

OBJECTIVE: To investigate the effect of luteolin on cell growth and apoptosis of HepG2 cells in vitro. METHODS: Cultured HepG2,HL60,A549 and LO2 cells were treated with luteolin for different doses (0 µg/ml,2.5 µg/ml,10 µg/ml and 20 µg/ml) and varied times (0 h,24 h,48 h and 72 h). Cell viability was measured with MTT assay and IC50 was calculated. The reactive oxygen species (ROS) levels in HepG2 cells treated with luteolin for 6 h and 12 h were measured with flow cytometry. Cell apoptosis of HepG2 cells treated with luteolin for 24h was examined with flow cytometry and Annexin V-FITC/PI. Expression levels of apoptosis pathway proteins (p53,ASPP2 and iASPP) in HepG2 cells were detected with western blot and the dose and time-effect was analyzed. RESULTS: Luteolin effectively inhibited tumor cell proliferation in a dose-and time-dependent manner,and the inhibition rates of 20 µg/ml Luteolin for 72 h were 39.34%,62.90%,57.57% and 62.90% to LO2,HepG2, HL60 and A549 cells,respectively. The intracellular ROS level was decreased in HepG2 cells by 13.88% and 41.11% after being treated with luteolin for 6 h and 12 h,respectively. The apoptosis rate of HepG2 cells treated with luteolin for 24 h was 14.43%,and western blot showed that luteolin reduced the expression level of iASPP by 77.07% and up-regulated the expression of p53 by 179.37% and ASPP2 by 725.02% in HepG2 cells treated with luteolin for 12 h. CONCLUSION: Luteolin has ant-proliferative and pro-apoptotic activity on hepatoma HepG2 cells, which is associated with the altered expression of pro-apoptotic factors and decreased ROS level in HepG2 cells.


Assuntos
Apoptose/efeitos dos fármacos , Luteolina/farmacologia , Células Hep G2 , Humanos , Luteolina/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
9.
BMC Biol ; 9: 18, 2011 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-21418589

RESUMO

BACKGROUND: Many cancer cells develop resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, necessitating combination with chemotherapy, and normal cells manifest side effects due to the combined treatment regimen of TRAIL and chemotherapeutic drugs. A novel cancer therapy utilizing TRAIL is thus urgently needed. RESULTS: In this study, we exploited TRAIL receptor-mediated endocytosis for the first time to produce a cell-permeable molecule, soluble forms of recombinant TRAIL:iron superoxide dismutase (sTRAIL:FeSOD), which possesses sTRAIL-induced apoptotic ability and FeSOD antioxidant activity. The FeSOD component was rapidly introduced into the cell by sTRAIL and intracellular superoxide radical (O2-), which have been implicated as potential modulators of apoptosis in cancer cells, was eliminated, resulting in a highly reduced cellular environment. The decrease in cellular O2-, which was accompanied by a brief accumulation of H2O2 and downregulation of phosphorylated Akt (p-Akt) and cellular FLICE-inhibitory protein, sensitized K562 leukemia cells and human promyelocytic leukemia (HL-60) cells to TRAIL-induced apoptosis. The low H2O2 levels protected human LO2 hepatocytes from sTRAIL:FeSOD-induced apoptosis despite downregulation of p-Akt. We also obtained evidence that the lack of response to sTRAIL:FeSOD in normal T cells occurred because sTRAIL:FeSOD shows much stronger shifts of redox state in erythroleukemia (K562) and HL-60 cells compared to that in normal T cells. K562 and HL-60 cells underwent sTRAIL:FeSOD-induced apoptosis without the dysfunction of mitochondria. CONCLUSIONS: The fusion protein overcomes the inability of FeSOD to permeate the cell membrane, exhibits synergistic apoptotic effects on K562 and HL-60 cells and demonstrates minimal toxicity to normal T cells and the normal liver cell line LO2, indicating its potential value for the treatment of leukemia.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Superóxido Dismutase/farmacologia , Superóxidos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Células HL-60 , Humanos , Peróxido de Hidrogênio/metabolismo , Células K562 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
10.
Cell Biol Int ; 33(6): 658-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19376252

RESUMO

Exogenous oxidative stress induces cell death, but the upstream molecular mechanisms involved of the process remain relatively unknown. We determined the instant dynamic reactions of intracellular reactive oxygen species (ROS, including hydrogen peroxide (H(2)O(2)), superoxide radical (O(2)(*)(-)), and nitric oxide (NO)) in cells exposed to exogenous oxidative stress by using a confocal laser scanning microscope. Stimulation with extracellular H(2)O(2) significantly increased the production of intracellular H(2)O(2), O(2)(*)(-), and NO (P<0.01) through certain mechanisms. Increased levels of intracellular ROS resulted in mitochondrial dysfunction, involving the impairment of mitochondrial activity and the depolarization of mitochondrial membrane potential. Mitochondrial dysfunction significantly inhibited the proliferation of human hepatoblastoma G2 (HepG2) cells and resulted in mitochondrial cytochrome c (cyt c) release. The results indicate that upstream ROS signals play a potential role in exogenous oxidative stress-induced cell death through mitochondrial dysfunction and cyt c release.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Microscopia Confocal , Transdução de Sinais
11.
J Zhejiang Univ Sci B ; 20(4): 310-321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30932376

RESUMO

OBJECTIVE: Reactive oxygen species (ROS) are involved in a variety of biological phenomena and serve both deleterious and beneficial roles. ROS quantification and assessment of reaction networks are desirable but difficult because of their short half-life and high reactivity. Here, we describe a pro-oxidative model in a single human lung carcinoma SPC-A-1 cell that was created by application of extracellular H2O2 stimuli. METHODS: Modified microfluidics and imaging techniques were used to determine O2 •- levels and construct an O2 •- reaction network. To elucidate the consequences of increased O2 •- input, the mitochondria were given a central role in the oxidative stress mode, by manipulating mitochondria-interrelated cytosolic Ca2+ levels, mitochondrial Ca2+ uptake, auto-amplification of intracellular ROS and the intrinsic apoptotic pathway. RESULTS AND CONCLUSIONS: Results from a modified microchip demonstrated that 1 mmol/L H2O2 induced a rapid increase in cellular O2 •- levels (>27 vs. >406 amol in 20 min), leading to increased cellular oxidizing power (evaluated by ROS levels) and decreased reducing power (evaluated by glutathione (GSH) levels). In addition, we examined the dynamics of cytosolic Ca2+ and mitochondrial Ca2+ by confocal laser scanning microscopy and confirmed that Ca2+ stores in the endoplasmic reticulum were the primary source of H2O2-induced cytosolic Ca2+ bursts. It is clear that mitochondria have pivotal roles in determining how exogenous oxidative stress affects cell fate. The stress response involves the transfer of Ca2+ signals between organelles, ROS auto-amplification, mitochondrial dysfunction, and a caspase-dependent apoptotic pathway.


Assuntos
Peróxido de Hidrogênio/química , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/química , Apoptose , Cálcio/metabolismo , Sinalização do Cálcio , Caspases/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Citosol/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução , Transdução de Sinais
12.
J Biomed Biotechnol ; 2008: 736060, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18645619

RESUMO

Human thymosin alpha 1 (Talpha1) is an important peptide in the development and senescence of immunological competence in human, and many studies have reported the expression of this peptide. In this study, we designed and synthesized the Talpha1 gene according to the E. coli codon usage preference and constructed a 6xTalpha1 concatemer. The latter was inserted into an E. coli expression vector pET-22b (+), and transformed into E. coli BL21 (DE3). After induction with IPTG, the concatemer protein was successfully expressed in E. coli then cleaved by hydroxylamine to release the Talpha1 monomer. Gly-SDS-PAGE and mass spectrometry confirmed that the recombinant protein was cleaved as intended. The bioactivity of the Talpha1 monomer was analyzed by lymphocyte proliferation and by mitochondrial activity in two different tumor cell lines. This study provides a description of the preparation of a bioactive Talpha1, which may prove useful in future biomedical research.


Assuntos
Hidroxilamina/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Timosina/análogos & derivados , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Escherichia coli/genética , Formazans/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Corpos de Inclusão/química , Isopropiltiogalactosídeo/farmacologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sais de Tetrazólio/metabolismo , Timalfasina , Timosina/síntese química , Timosina/química , Timosina/genética , Timosina/metabolismo
13.
J Chromatogr A ; 1135(1): 109-14, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17005186

RESUMO

An intracellular derivatization method mediated by liposome was developed for single cell analysis with chip-based capillary electrophoresis (CE) and laser-induced fluorescence (LIF) detection. Liposomes with an average diameter of 100 nm were produced from phosphatidylcholine to encapsulate fluorescent dyes by an ultrasonic method. The encapsulation yield and the vesicle density were determined to be 46+/-5% and 8.8 x 10(14)/mL, respectively. The amount of fluorescent dye that entered the cells was dependent on the duration of incubating cells with liposomes, liposome density, and concentration of the dye solution encapsulated in liposomes. The described method introduced cell membrane nonpermeable fluorescent dyes into living cells without reducing cell viability. Single cell analysis using microfluidic chip-based CE revealed that liposome-membrane fusion occurred after entrance of liposomes into the cells, with release of encapsulated fluorescence dyes and labeling of intracellular species.


Assuntos
Células , Eletroforese Capilar/métodos , Fluorometria/métodos , Lipossomos/química , Coloração e Rotulagem , Células/química , Células/metabolismo , Células/ultraestrutura , Fluorescência , Corantes Fluorescentes/química , Lasers , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Zhejiang Univ Sci B ; 7(1): 13-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16365920

RESUMO

v-Src is a non-receptor protein tyrosine kinase involved in many signal transduction pathways and closely related to the activation and development of cancers. We present here the expression, purification, and bioactivity of a GST (glutathione S-transferase)-fused v-Src from a bacterial expression system. Different culture conditions were examined in an isopropyl beta-D-thiogalactopyranoside (IPTG)-regulated expression, and the fused protein was purified using GSH (glutathione) affinity chromatography. ELISA (enzyme-linked immunosorbent assay) was employed to determine the phosphorylation kinase activity of the GST-fused v-Src. This strategy seems to be more promising than the insect cell system or other eukaryotic systems employed in earlier Src expression.


Assuntos
Glutationa Transferase/biossíntese , Proteína Oncogênica pp60(v-src)/biossíntese , Proteína Oncogênica pp60(v-src)/química , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Proteína Oncogênica pp60(v-src)/genética , Proteína Oncogênica pp60(v-src)/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Saccharomyces cerevisiae/genética
15.
J Zhejiang Univ Sci B ; 6(8): 832-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16052719

RESUMO

Total RNA was isolated from the hybridoma cell line (LC-1), which secretes anti-lung adenocarcinoma monoclonal antibody, and was transferred into cDNA. Based on the FR1 (framework region 1) and FR4 conserved regions of LC-1 gene, the variable regions of heavy chain (Vh) and light chain (Vl) were amplified, and the Vh and modified Vl were connected to single chain Fv (ScFv) by SOE-PCR (splice overlap extension PCR). The modified ScFv was fused with green fluorescent protein (GFP) and introduced into E. coli JM109. The fusion protein induced by IPTG (Isopropylthiogalactoside) was about 57000 on a 10% SDS-PAGE gel (10% Sds Polyacrylamide Gel Electrophoresis), and primarily manifested as inclusion bodies. The renatured protein purified by Ni-NTA Superflow resins showed ability to bind to antigen on SPC-A-1 lung adenocarcinoma. In addition, the induced host cells fluoresced bright green under 395 nm wavelength, which indicated that the expected protein with dual activity was expressed in the prokaryotic system. The ScFv with GFP tag used in this research can be applied as a new reagent to detect immunological dye, and provide a feasible way to detect adenocarcinoma in a clinical setting.


Assuntos
Adenocarcinoma/imunologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Clonagem Molecular/métodos , Hibridomas/metabolismo , Fragmentos de Imunoglobulinas/biossíntese , Fragmentos de Imunoglobulinas/imunologia , Neoplasias Pulmonares/imunologia , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação
16.
Cell Res ; 25(9): 997-1012, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26272168

RESUMO

Organ size determination is one of the most intriguing unsolved mysteries in biology. Aberrant activation of the major effector and transcription co-activator YAP in the Hippo pathway causes drastic organ enlargement in development and underlies tumorigenesis in many human cancers. However, how robust YAP activation is achieved during organ size control remains elusive. Here we report that the YAP signaling is sustained through a novel microRNA-dependent positive feedback loop. miR-130a, which is directly induced by YAP, could effectively repress VGLL4, an inhibitor of YAP activity, thereby amplifying the YAP signals. Inhibition of miR-130a reversed liver size enlargement induced by Hippo pathway inactivation and blocked YAP-induced tumorigenesis. Furthermore, the Drosophila Hippo pathway target bantam functionally mimics miR-130a by repressing the VGLL4 homolog SdBP/Tgi. These findings reveal an evolutionarily conserved positive feedback mechanism underlying robustness of the Hippo pathway in size control and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Proteína Rica em Cisteína 61/antagonistas & inibidores , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , MicroRNAs/antagonistas & inibidores , Tamanho do Órgão/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo , Proteínas de Sinalização YAP
17.
J Zhejiang Univ Sci ; 5(2): 164-72, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14674027

RESUMO

Beta-1,4-galactosyltransferase (beta4Gal-T) (EC 2.4.1.38) plays a multifunctional role in many aspects of normal cell physiology. By now, several dozens of beta4Gal-T genes have been cloned, separated from mouse, chick, bovine, human, etc. This paper presents the cloning and GST-fused expression of mouse beta4Gal-T gene in Escherichia coli (E. coli). The target gene was cloned by PCR, followed by identification by DNA sequencing and expression in E.coli with isopropyl-beta-D-thiogalactoside (IPTG) gradient concentrations, products of which were separated on SDS-PAGE showing that the target protein had the same molecular weight as that of mouse beta4Gal-T. The transcriptional product of beta4Gal-T gene was proved by Western hybridization analysis to be due to GST-fusion.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Glutationa Transferase/biossíntese , Glutationa Transferase/genética , N-Acetil-Lactosamina Sintase/biossíntese , N-Acetil-Lactosamina Sintase/genética , Sequência de Aminoácidos , Animais , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Dados de Sequência Molecular , Peso Molecular , N-Acetil-Lactosamina Sintase/química , Filogenia , Proteínas Recombinantes de Fusão/biossíntese , Homologia de Sequência de Aminoácidos , Transfecção/métodos
18.
Int J Biol Sci ; 10(2): 212-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24550689

RESUMO

Malignant gliomas are common primary tumors of the central nervous system. The prognosis of patients with malignant glioma is poor in spite of current intensive therapy and thus novel therapeutic modalities are necessary. Bufalin is the major component of Chan-Su (a traditional Chinese medicine) extracts from the venom of Bufo gargarizan. In this study, we evaluated the growth inhibitory effect of bufalin on glioma cells and explored the underlying molecular mechanisms. Our results showed that bufalin inhibited the growth of glioma cells significantly. Mechanistic studies demonstrated that bufalin induced apoptosis through mitochondrial apoptotic pathway. In addition, bufalin was also found to induce ER stress-mediated apoptosis, which was supported by the up- regulation of ER stress markers, CHOP and GRP78, and augmented phosphorylation of PERK and eIF2α as well as cleavage of caspase-4. Downregulation of CHOP using siCHOP RNA attenuated bufalin-induced apoptosis, further confirming the role of ER stress response in mediating bufalin-induced apoptosis. Evidence of bufalin-induced autophagy included formation of the acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. Further experiments showed that the mechanism of bufalin-induced autophagy associated with ATP deleption involved an increase in the active form of AMPK, decreased phosphorylation levels of mTOR and its downstream targets 4EBP1 and p70S6K1. Furthermore, TUDC and silencing of eIF2α or CHOP partially blocked bufalin-induced accumulation of LC3-II, which indicated that ER stress preceded bufalin-induced autophagy and PERK/eIF2α/CHOP signaling pathway played a major part in the process. Blockage of autophagy increased expression of ER stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death. In conclusion, bufalin inhibits glioma cell growth and induces interplay between apoptosis and autophagy through endoplasmic reticulum stress. It will provide molecular bases for developing bufalin into a drug candidate for the treatment of maglinant glioma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bufanolídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/patologia , Antineoplásicos/uso terapêutico , Bufanolídeos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
19.
Chem Biol Interact ; 218: 28-41, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24802810

RESUMO

Malignant gliomas are the most common primary brain tumors, and novel ways of treating gliomas are urgently needed. Ursolic acid (UA), a pentacyclic triterpenoid, has been reported to exhibit promising antitumor activity. Here, we evaluated the effects of UA on U87MG cells and explored the underlying molecular mechanisms. The results demonstrated that both G1-phase arrest and autophagy were induced by UA in U87MG cells. Evidence of UA-induced autophagy included the formation of acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. UA was also found to induce ER stress and an increase in intracellular calcium accompanied by ROS production. The increase in free cytosolic calcium induced by UA activated the CaMKK-AMPK-mTOR kinase signaling cascade, which ultimately triggered autophagy. Western blot analysis showed that UA promoted the phosphorylation of PERK and eIF2α; this was followed by the upregulation of the downstream protein CHOP, implying the involvement of the ER stress-mediated PERK/eIF2α/CHOP pathway in glioma cells. Meanwhile, UA activated IRE1α and subsequently increased the levels of phosphorylated JNK and Bcl-2, resulting in the dissociation of Beclin1 from Bcl-2. Furthermore, TUDCA and the silencing of either PERK or IRE1α partially blocked the UA-induced accumulation of LC3-II, suggesting that ER stress precedes the process of autophagy. Additionally, NAC attenuated the UA-induced elevation in cytosolic calcium, ER stress markers and autophagy-related proteins, indicating that UA triggered ER stress and autophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism triggered by UA and provide a molecular basis for developing UA into a drug candidate.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Ácido Ursólico
20.
Food Chem ; 141(2): 946-53, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23790872

RESUMO

HS002-II, a novel protein-bound polysaccharide with 44kDa molecular weight, was fractionated from submerged cultures of Hirsutella sinensis Liu, Guo, Yu & Zeng by DEAE-Sepharose and Sephacryl S200 chromatography. Based on the results of infrared spectroscopy, high performance liquid chromatography, methylation, amino acid analysis, NMR spectroscopy and atomic force microscopy, the polysaccharide moieties of HS002-II mainly contained a long backbone of (1→3)-linked α-d-ribofuranosyl units (1→4)-linked α-d-xylopyranosyl units and (1→4)-linked ß-d-glucopyranosyl units, which was substituted at C-6. The two branches were ß-d-mannopyranosyl residues and ß-d-galactopyranosyl residues terminated with α-l-arabinopyranosyl residues, respectively. HS002-II consisted of 57.9% polysaccharide and 42.1% protein with the existence of N-type carbohydrate-protein linkage. In terms of the pro-inflammatory cytokines assay (NO, TNF-α, IL-1ß and NF-κB) using murine macrophages cell line (RAW264.7), HS002-II exhibited significant immunomodulatory activity by stimulating the IκB-NF-κB pathway.


Assuntos
Adjuvantes Imunológicos/química , Hypocreales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Proteínas/química , Adjuvantes Imunológicos/farmacologia , Animais , Configuração de Carboidratos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Espectroscopia de Ressonância Magnética , Camundongos , Peso Molecular , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA