Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sports Sci ; : 1-7, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231296

RESUMO

This study investigated the relationships between load-velocity profiling and 50 m breaststroke performance. Twenty-seven male swimmers qualified for the national championship participated and performed a 50 m breaststroke trial with a multicamera system. The total race time (t50 m), forward velocity during surface swimming (v50 m), stroke length, and stroke frequency were obtained from the automatic post-processing of the system. Afterwards, the participants performed semi-tethered swimming with three external loads using a robotic resistance device. The average velocity from three stroke cycles was plotted as a function of the corresponding load. The theoretical maximum velocity (v0) and load (L0), L0 normalized to body mass, steepness of the regression line (slope), and active drag (AD) were calculated. The main findings were moderate to large correlations of two 50 m race variables (t50 m and v50 m) with v0, L0, and AD (t50 m range: r = -.444 to r = -.619, p = .020 to p = .001), (v50 m range: r = .451 to r = .568, p = .018 to p = .002). This shows the importance of applying maximum propulsive force to achieve high swimming performance and that load-velocity profiling is an indicator of 50 m breaststroke performance. Load-velocity measurements over time can also monitor velocity, strength, and drag-minimizing abilities, explaining performance changes and training effects.

2.
J Sports Sci ; 41(6): 557-564, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37356108

RESUMO

Swimmers perform better times in short course due to the greater numbers of turns; however, the differences between short (SC) and long course (LC) depending on the swimmers' age and sex are unclear. The main aim of this study was to analyse the differences in seasonal best times between SC and LC in freestyle events in relation to age and sex. Seasonal best times performed in SC and LC in each freestyle swimming event of 100 top national Spanish swimmers in two seasons were included in this analysis. A three-way ANOVA was performed to analyse the effect of the three factors on the difference between SC and LC times. Senior swimmers presented the greatest differences between SC and LC in comparison with other age-groups. Age-groups 11-12 and 14-16 showed similar SC and LC differences; nevertheless, these differences are significant (p < 0.05) with the 13-14 age-group. Generally, from 14 to 15 years old the differences between SC and LC increased. The result of this study indicates that the differences between SC and LC are unsteady throughout the swimming career. Thus, when considering swimmers' performance using both SC and LC results, SC results should be adjusted depending on the age of the swimmers.


Assuntos
Desempenho Atlético , Humanos , Adolescente , Estações do Ano , Natação
3.
J Sports Sci ; 39(23): 2665-2673, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34878366

RESUMO

In breaststroke races, the dolphin kick could finish before, at the same time, or during the arm pull-out, but it is unclear how swimmers perform this technique. The aim of this study was to investigate whether swimmers glide between the dolphin kick and arm pull-out, favour continuity or even overlap those two phases, as it would impact the active underwater sequence. Fourteen international and national male swimmers performed 100-m breaststroke with all-out effort in a pre-calibrated 25 m swimming pool. A multi-camera system tracked the head of the swimmers. Key points of the active underwater sequence were obtained from notational analysis. A hierarchical cluster analysis identified three coordination profiles. All swimmers started their dolphin kick before the arm pull-out. However, one swimmer started the arm pull-out before the end of the dolphin kick, seven swimmers started the arm pull-out after the end of the dolphin kick, and four swimmers synchronised the beginning of the arm pull-out and the end of the dolphin kick, while two other swimmers mixed two coordination profiles among the start and the three turns. Those different profiles allow achieving similar performance outcome, suggesting individual training regarding the underwater phase.


Assuntos
Braço , Natação , Fenômenos Biomecânicos , Análise por Conglomerados , Humanos , Perna (Membro) , Masculino
4.
Int J Sports Med ; 41(7): 461-467, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32059244

RESUMO

The purpose of this study was to establish the relationships between 50 m sprint swimming performance and variables acquired from a swimming load-velocity profile established by semi-tethered butterfly swimming. Twelve male elite swimmers participated in the present study and performed 50 m sprint and semi-tethered butterfly swimming with different loads. The mean velocity among all upper-limb cycles was obtained from the 50 m swimming (race velocity), and maximum load and velocity were predicted from the load-velocity profile established by the semi-tethered swimming test. There was a very large correlation (r=0.885, p<0.01) and a high intra-class correlation (0.844, p<0.001) between the race velocity and the predicted maximum velocity. Significant correlations were also observed between the predicted maximum load and the 50 m time as well as the race velocity (r=- 0.624 and 0.556, respectively, both p<0.05), which imply that an ability to achieve a large tethered swimming force is associated with 50 m butterfly performance. These results indicate that the load-velocity profile is a useful tool for predicting and assessing sprint butterfly swimming performance.


Assuntos
Desempenho Atlético/fisiologia , Esforço Físico/fisiologia , Natação/fisiologia , Aceleração , Adolescente , Fenômenos Biomecânicos , Teste de Esforço/métodos , Humanos , Masculino , Extremidade Superior/fisiologia , Adulto Jovem
5.
J Sports Sci Med ; 19(4): 727-734, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239947

RESUMO

The purposes of this study were to establish relationships between selected underwater kinematics and the starting and turning performances and to quantify kinematic differences between these segments in sprint butterfly swimming. Fourteen male swimmers performed 50 m maximal butterfly swimming in a short course pre-calibrated pool. The entire race was filmed by a multi-camera system, which quantified the forward head displacement and velocity (vxhead ) throughout the race with a sampling frequency of 50 Hz. The time taken between 0-15 m (T0-15 ) and 25-35 m (T25-35 ) as well as 16 kinematic variables were acquired from the data provided by the system and manual video processing for further analysis. The mean underwater velocity (UW-vxmean ) was related to both T0-15 and T25-35 (r = -0.70 and -0.95, respectively; p < 0.01). UW-vxmean was positively correlated with vxhead during the first kick (r = 0.84, p < 0.001) in the start segment and with vxhead during the last kick in the turn segment (r = 0.68, p < 0.01), but other kinematic variables such as kick frequency, body angle, deceleration during kicks (Deckick ), and glide time were not related to UW-vxmean . Swimmers had larger vxhead at the beginning of the segment and during the first kick in the start than in turn segment (p < 0.001). However, vxhead during the last kick was similar due to the larger Deckick (p < 0.05) in the start than in turn segment. The underwater time was similar between the segments despite a longer underwater distance (p < 0.01) and a larger kick count and frequency (p < 0.01) in the start than turn segment. In conclusion, UW-vxmean is an important factor for start and turn performances, but swimmers select individual kinematic strategies to achieve a large UW-vxmean . Results also highlighted the importance of the different parts within the underwater segment in each segment.


Assuntos
Desempenho Atlético , Fenômenos Biomecânicos , Natação/fisiologia , Adolescente , Atletas , Comportamento Competitivo , Humanos , Masculino , Adulto Jovem
6.
Eur J Appl Physiol ; 118(6): 1107-1118, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29556773

RESUMO

PURPOSE: The purpose of this study was to determine kinematic and energetic differences between front crawl and backstroke performed at the same aerobic speeds. METHODS: Ten male competitive swimmers performed front crawl and backstroke at a pre-determined sub-anaerobic threshold speed to assess energy cost (through oxygen uptake measurement) and kinematics (using three-dimensional videography to determine stroke frequency and length, intra-cycle velocity fluctuation, three-dimensional wrist and ankle speeds, and vertical and lateral ankle range of motion). For detailed kinematic analysis, resultant displacement, the duration, and three-dimensional speed of the wrist during the entry, pull, push, and release phases were also investigated. RESULTS: There were no differences in stroke frequency/length and intra-cycle velocity fluctuation between the swimming techniques, however, swimmers had lower energy cost in front crawl than in backstroke (0.77 ± 0.08 vs 0.91 ± 0.12 kJ m-1, p < 0.01). Slower three-dimensional wrist and ankle speeds under the water (1.29 ± 0.10 vs 1.55 ± 0.10 and 0.80 ± 0.16 vs 0.97 ± 0.13 m s-1, both p < 0.01) and smaller ankle vertical range of motion (0.36 ± 0.06 vs 0.47 ± 0.07 m, p < 0.01) in front crawl than in backstroke were also observed, which indirectly suggested higher propulsive efficiency in front crawl. CONCLUSION: Front crawl is less costly than backstroke, and limbs motion in front crawl is more effective than in backstroke.


Assuntos
Limiar Anaeróbio , Metabolismo Energético , Natação/fisiologia , Adolescente , Fenômenos Biomecânicos , Humanos , Masculino
7.
J Sports Sci Med ; 15(1): 158-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26957939

RESUMO

The purpose of this study was to explore the reliability of estimating three-dimensional (3D) angular kinematics and kinetics of a swimmer derived from digitized video. Two high-level front crawl swimmers and one high level backstroke swimmer were recorded by four underwater and two above water video cameras. One of the front crawl swimmers was digitized at 50 fields per second with a window for smoothing by a 4(th) order Butterworth digital filter extending 10 fields beyond the start and finish of the stroke cycle (FC1), while the other front crawl (FC2) and backstroke (BS) swimmer were digitized at 25 frames per second with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of one stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) yaw, pitch, roll, and torques were derived together with wrist and ankle moment arms with respect to an inertial reference system with origin at the CM. Coefficients of repeatability ranging from r = 0.93 to r = 0.99 indicated that both digitising sampling rates and extrapolation methods are sufficiently reliable to identify real differences in net torque production. This will enable the sources of rotations about the three axes to be explained in future research. Errors in angular kinematics and displacements of the wrist and ankles relative to range of motion were small for all but the ankles in the X (swimming) direction for FC2 who had a very vigorous kick. To avoid large errors when digitising the ankles of swimmers with vigorous kicks it is recommended that a marker on the shank could be used to calculate the ankle position based on the known displacements between knee, shank, and ankle markers. Key pointsUsing the methods described, an inverse dynamics approach based on 3D position data digitized manually from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding torque production in swimming additional to those of other approaches.The ability to link the torque profiles to swimming actions and technique is enhanced by having additional data such as wrist and ankle displacements that can be obtained readily from the digitized data.An additional marker on the shank should be used to improve accuracy and reliability of calculating the ankle motion for swimmers with a vigorous kick.

8.
J Sports Sci Med ; 14(2): 441-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25983595

RESUMO

The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4(th) order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p < 0.01) and better for backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key pointsAn inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches.The ability to link the force profiles to swimming actions and technique is enhanced by having additional data such as wrist and foot velocities that can be obtained readily from the digitized data.Sampling at 25 Hz with at least 5 samples before and after the period of interest is required for reliable data when using a 4th Order Butterworth Digital Filter.

9.
J Sports Sci Med ; 14(1): 215-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729310

RESUMO

Due to the difficulty of measuring forces and torques acting on a swimmer during mid-pool swimming, an inverse dynamics approach is required. Personalised body segment parameter (BSP) data enabling calculation of net forces and torques can be obtained using the elliptical zone method. The purpose of this study was to establish the reliability of estimating BSP data of swimmers by the elliptical zone method with segment outlines being traced manually on a personal computer screen. Five assessors digitised the segment landmarks and traced the body segments from front and side view digital photographs of 11 single arm amputee swimmers. Each swimmer was assessed five times by each of the five assessors. The order was fully randomised. Within assessor variability was less than 5% for the segment centre of mass position of all segments, for segment length except the neck (5.2%), and for segment mass except neck (11.9%), hands (Left: 8.1%; Right: 5.8%) and feet (Left: 7.3%; Right: 7.3%). Analysis of mean variability within and between assessors indicated that between assessor variability was generally as large or larger than within assessor variability. Consequently it is recommended that when seeking personalised BSP data to maximise the accuracy of derived kinetics and sensitivity for longitudinal and bilateral within-subject comparisons the individual should be assessed by the same assessor with mean values obtained from five repeat digitisations. This study established that using the elliptical zone method using E-Zone software is a reliable and convenient way of obtaining personalised BSP data for use in analysis of swimming. Key pointsA unique (not been attempted previously) study of reliability of calculating personalised Body Segment Parameter (BSP) data using the elliptical zone methodEstablishes benchmark data regarding the reliability of BSP data for comparison with emerging technologies for obtaining personalised BSP data non-invasively.Provides a description and guidelines for good practice for maximising the accuracy of derived kinematics and kinetics in swimming.The method of body modelling described can also be applied to studies in other sports and in assessing change in health status related to body shape characteristics for sport and non-sport populations.

10.
Hum Mov Sci ; 93: 103170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043482

RESUMO

Synchronizing movement with external stimuli is important in musicians and athletes. This study investigated the effects of sound characteristics, including sound with harmonics (square wave) and without harmonics (sine wave) and levels of expertise in sports and music on rhythmic ability. Thirty-two university students participated in the study. The participants were divided into sixteen music education (ME) and sixteen physical education (PE) majors. They were asked to perform finger tapping tasks with 1,2 and 3 Hz beat rates, tapping in time with the sine and square wave beat produced by a metronome. The relative phase angle of finger tapping and the onset time of metronome sound were calculated using circular statistics. The results showed that type of wave and music experience affected the rhythmic ability of participants. Our study highlights the importance of types of waves on rhythmic ability, especially for participants with no background in music. The square wave is recommended for athletes to learn to synchronize their movement with beats.


Assuntos
Música , Percepção do Tempo , Humanos , Movimento , Som , Tempo , Percepção Auditiva
11.
Int J Sports Physiol Perform ; 19(1): 44-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857381

RESUMO

PURPOSE: The present study aimed to establish differences in load-velocity profiling, active drag (AD), and drag coefficient (Cd) between 3 age groups of female swimmers. METHODS: Thirty-three swimmers (11, 13, or 16 y old) were recruited. The individual load-velocity profile was determined for the 4 competitive swimming strokes. The maximal velocity (V0), maximal load (L0), L0 normalized to the body mass, AD, and Cd were compared between the groups. A 2-way analysis of variance and correlation analysis were conducted. RESULTS: Compared with their younger counterparts, 16-year-old swimmers generally had larger V0, L0, and AD, which was particularly evident when comparing them with 11-year-old swimmers (P ≤ .052). The exception was breaststroke, where no differences were observed in L0 and AD and Cd was smaller in the 16-year-old group than the 11-year-old group (P = .03). There was a negative correlation between Cd and V0 for all groups in backstroke (P ≤ .038) and for the 11-year-old group and 13-year-old group in breaststroke (P ≤ .022) and front crawl (P ≤ .010). For the 16-year-old group, large correlations with V0 were observed for L0, L0 normalized to the body mass, and AD (P ≤ .010) in breaststroke and for L0 and AD with V0 in front crawl (P ≤ .042). In butterfly, large negative correlations with V0 were observed in the 13-year-old group for all parameters (P ≤ .027). CONCLUSIONS: Greater propulsive force is likely the factor that differentiates the oldest age group from the younger groups, except for breaststroke, where a lower Cd (implying a better technique) is evident in the oldest group.


Assuntos
Cádmio , Natação , Humanos , Feminino , Adolescente , Criança , Fenômenos Biomecânicos
12.
Sports Biomech ; 22(12): 1752-1763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34711136

RESUMO

This study aimed to clarify the kinematic and kinetic parameters that identify the technical differences in the eggbeater kick. Twelve water polo players performed the eggbeater kick, and its kinematics were recorded by a motion capture system. Pressure distributions around the feet were measured by sixteen pressure sensors attached to the dorsal and plantar surfaces of the feet, from which the resultant fluid force acting on the feet and the vertical component of the force (i.e., propulsive force) were estimated. Repeated-measures analysis of variance (including post hoc test) results showed that the pressure difference, due to negative pressure on the dorsal side of the foot, around the first toe was significantly larger than the other foot segments (difference of up to 7 kN/m2, P < 0.01). Moreover, cluster analysis (including Fisher information) results showed that the kinetic (fluid force and pressure) data had a major influence on clustering; the highest Fisher information was 10.42 for the mean propulsive force. Among the kinematic foot parameters, the influence of the foot angle data on clustering was large, suggesting its importance as a technical parameter of the eggbeater kick in relation to the kinetic data.


Assuntos
Extremidade Inferior , Esportes Aquáticos , Humanos , Fenômenos Biomecânicos , , Cinética
13.
Sports Biomech ; 22(12): 1722-1733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34380363

RESUMO

The purpose of the present study was to investigate differences in a 100 m breaststroke time-trial between elite and sub-elite swimmers. Elite and sub-elite male swimmers (seven each; 772.1 ± 35.2 and 610.6 ± 24.7 FINA point, respectively) performed 100 m breaststroke, which was recorded by a multi-camera system that provided the mean and time-series velocity data in the glide, pull-out, and clean-swimming segments. The mean velocity in each segment was compared between the groups using an independent-samples t-test (for the 1st lap) and two-way mixed-design ANOVA (for the 2nd-4th laps), which suggested a larger mean clean-swimming (in all laps; 7-11% difference) and glide (in the 2nd and 3rd lap; about 13% difference) velocity for the elite swimmers. The time-series data displayed faster velocity in elite swimmers than in the sub-elite group during the first part (up to 40% time) of the glide segment (p < 0.05). Differences in the clean-swimming segment between the groups were observed (p < 0.001) apart from the first 5-15% time of the segment. No differences in the pull-out and at the beginning of the clean-swimming imply that coaches and swimmers should not assume that a good clean-swimming technique also guarantees fast velocity in these segments.


Assuntos
Natação , Humanos , Masculino , Fenômenos Biomecânicos , Fatores de Tempo
14.
Sports Biomech ; 22(8): 982-996, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32633693

RESUMO

The aim of this study was to determine the influence of torso morphology on maximum instantaneous hydrodynamic resistance in front crawl swimming. Outlines of the torso in the frontal and anteroposterior planes were calculated from photographic images to determine continuous form gradients (m/m) for the anterior, posterior and lateral aspects of the torso. Torso cross-sectional areas at each vertical sample (0.001 m) were used to calculate maximal rate of change in cross-sectional area (m2/m) in the chest-waist and waist-hip segments. During the non-propulsive hand phase in middle-long distance front crawl, kicking propulsion is negligible and therefore the net force is equal to the drag. Drag coefficients were calculated at the instant of maximum horizontal deceleration of centre of mass during the non-propulsive hand phase of 400 m pace front crawl. Maximal rate of change in cross-sectional area (r = 0.44, p = 0.014) and posterior form gradient (r = 0.50, p = 0.006) of the waist-hip torso segment had moderate positive correlations with the maximal drag coefficient. A regression model including these variables explained 41% of the variance (p = 0.001). Indentation at the waist and curvature of the buttocks may result in greater drag force and influence swimming performance.


Assuntos
Hidrodinâmica , Natação , Humanos , Fenômenos Biomecânicos , Tronco , Mãos
15.
PLoS One ; 18(3): e0283234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943838

RESUMO

The purpose of the present study was to investigate the intra- and inter-individual variability in arm-leg coordination during the underwater phase of the turn segment in 200 m breaststroke. Thirteen male swimmers were recruited and performed a 200 m breaststroke in a pre-calibrated 25 m pool. Sub-phases during the underwater segment were obtained using a notational analysis, and the mean velocity, displacement and duration during each sub-phase were obtained. A hierarchical cluster analysis (HCA) was performed using the analysed variables in all phases to identify inter-individual variability and random intra-individual variability. In addition, a linear mixed model (LMM: lap as a fixed effect and the participant as a random effect) was conducted to investigate systematic intra-individual variability. HCA identified three coordination patterns that were distinguished by the timing of the dolphin kick relative to the arm pull-out and the duration of the glide with arms at the side. All swimmers except one performed the arm pull-out after the dolphin kick. Nine swimmers maintained one coordination pattern, but other swimmers switched their coordination during the trial, particularly by shortening the duration of the glide with arms at the side. LMM showed a linear decrease (from the first to the last turn) in the time gap between the end of the dolphin kick and the start of the arm pull-out (a glide with the streamlined body position; F = 9.64, p = 0.034) and the glide duration with the arms at the side (F = 11.66, p = 0.015). In conclusion, both inter- and intra-individual variabilities during the underwater phase were evident in 200 m breaststroke turns, which were categorised into three patterns based on the timing of the dolphin kick and the duration of glides.


Assuntos
Perna (Membro) , Natação , Humanos , Masculino , Postura , Braço , Fenômenos Biomecânicos
16.
Sports Biomech ; 22(12): 1590-1601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34009106

RESUMO

The purpose of the present study was to investigate differences between front crawl and backstroke swimming in hydrodynamic (produced by swimmers) and buoyant torque around the transverse axis. Ten swimmers performed 50 m front crawl and backstroke at four selected velocities (same velocities for both techniques). All trials were recorded by four underwater and two above-water cameras to collect data for three-dimensional whole-body motion during one stroke cycle (defined as a period between two consecutive wrist entries to the water). The inverse dynamics approach was applied to obtain buoyant and hydrodynamic torque around the transverse axis. The differences between front crawl and backstroke techniques across four levels of velocity were assessed with a two-way repeated-measures ANOVA. There was a main effect of technique on the mean buoyant and hydrodynamic torque, with 30-40 % larger leg-raising buoyant torque and leg sinking hydrodynamic torque in front crawl than in backstroke (p ≤ 0.001). The time-series data revealed that the hydrodynamic leg-sinking torque had its peaks during the first half of the underwater upper-limb motion in front crawl, but that was not observed in backstroke, implying that the strategy of counterbalancing the buoyant torque is different between the techniques.


Assuntos
Natação , Extremidade Superior , Humanos , Fenômenos Biomecânicos , Punho , Água
17.
J Sci Med Sport ; 26(6): 328-334, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37271700

RESUMO

OBJECTIVES: Swimming intra-cycle velocity fluctuation has often been assessed using the coefficient of variation, which requires a mathematical assumption of a positive linear relationship between the velocity mean and standard deviation. As this assumption has never been tested, the current study aimed to investigate the within-participant relationship between the mean and standard deviation of the intra-cycle velocity. DESIGN: Cross-sectional study. METHODS: The intra-trial mean and standard deviation of one stroke cycle centre of mass velocity (vCMmean and vCMSD, respectively) were obtained from 80 front crawl trials (10 participants × eight swimming speeds) using whole-body three-dimensional motion analysis. The linear mixed-effect model and intra-class correlation analysis were used to test the linear relationship between vCMmean and vCMSD (n = 80) and the absolute agreement between vCMmean and vCMSD relative to those during the fastest trial (n = 70). RESULTS: Neither the linear regression model (95 % confidence interval range of the fixed effect of vCMmean: -0.003-0.031) nor the intra-class correlation coefficient (ICC = 0.07; p = 0.26) verified linear relationships between vCMmean and vCMSD, which violated the background assumption of coefficient of variation calculation. CONCLUSIONS: When investigating the intra-cycle velocity fluctuation, the coefficient of variation should not be used alone. Researchers and practitioners should always interpret/report the obtained results together with the mean and standard deviation to avoid misleading conclusions and feedback because the coefficient of variation obtained from one cycle velocity data is likely biased by mean velocity.


Assuntos
Natação , Humanos , Estudos Transversais , Fenômenos Biomecânicos
18.
Front Physiol ; 14: 1213151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457037

RESUMO

Swimming is a time-based sport and hence strongly dependent from velocity. Most studies about swimming refer to velocity as discrete variable, i.e., 0-D (no time dimension). However, it was argued that using swimming velocity as a continuous variable (1-D, with time dimension) with Statistical Parametric Mapping (SPM) can bring deeper and detailed insights about swimming performance. Therefore, the aim of this study was to perform a systematic review about the current body of knowledge of using Statistical Parametric Mapping in a swimming context. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant articles. After screening, nine articles related to Statistical Parametric Mapping (SPM) analysis in swimming were retained for synthesis. Results showed that four articles (44.4%) aimed to understand the kinematics, isokinetic joint torque or electromyographic (EMG) pattern of the swimmer's shoulder either on land or during front crawl trials. Two articles (22.2%) focused on understanding the swimming velocity while performing the breaststroke stroke. One article (11.1%) analyzed the swimmers' propulsion at front-crawl stroke, another one (11.1%) compared swimming velocity during a complete stroke cycle in young swimmers of both sexes as a discrete variable and as a continuous variable. Also, one article (11.1%) analyzed the underwater undulatory velocity. In an EMG context, some findings verified in SPM are not possible to be discovered with traditional 0-D statistical methods. Studies about swimming velocity (breaststroke, freestyle, and underwater undulatory velocity) and propulsion (front-crawl) also highlighted the SPM advantages in comparison to traditional statistical methods. By using SPM, researchers were able to verify specifically where within the stroke cycle significant differences were found. Therefore, coaches can get more detailed information to design specific training drills to overcome hypothetical handicaps.

19.
Front Physiol ; 14: 1260346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156067

RESUMO

This study aimed to evaluate the test-retest reliability of a sprint performance test with semi-tethered front crawl swimming to indirectly assess the current potential to perform at maximal anaerobic effort in adolescent swimmers. Eight adolescent swimmers participated in this study (gender: females (n = 4) aged 13.0 ± 0.8 years, body height 1.6 ± 0.0 m, body mass 50.1 ± 4.5 kg; and males (n = 4) aged 13.3 ± 1.3 years, body height 1.7 ± 0.1 m, body mass 59.0 ± 8.2 kg. The testing protocol consisted of two trials of 25 m semi-tethered front crawl swimming with maximal effort and with 1 kg resisted isotonic load. Velocity data were recorded automatically by the 1080 Sprint device for 15 m (between 3 m and 18 m). The Fast Fourier Transform algorithm filtered raw instantaneous swimming velocity data in distance (time) function. A third-degree polynomial was used to extract the individual velocity profile, from which the following variables were chosen for test-retest reliability and the assessment of sprint performance: ttrial15, vmax, vmin, tvto max, tvat max, Dto vmax, Dat vmax, fatigue index. Parameters such as vmax, vmin, and ttrial15 were estimated from swimming velocity profiles and considered as reliable. The CV showed low variance <5%; while ICC2,1 demonstrated respectively good (ICC2,1: 0.88), very good (ICC2,1: 0.95), and excellent (ICC2,1: 0.98) rate of relative reliability; and the Bland-Altman index revealed an acceptable agreement (LoA ≤5%) between two measurements. The sprint performance test based on semi-tethered front crawl swimming confirmed that ttrial15, vmax, and vmin were reliable variables to indirectly indicate a potential to perform the maximal anaerobic effort among adolescent swimmers. The evaluation of the swimming velocity profiles allows coaches to monitor the adaptive changes of performance during the training process.

20.
Sports Biomech ; 22(12): 1572-1589, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37081773

RESUMO

Free-swimming performance depends strongly on the ability to develop propulsive force and minimise resistive drag. Therefore, estimating resistive drag (passive or active) may be important to understand how free-swimming performance can be improved. The purpose of this narrative overview was to describe and discuss experimental methods of measuring or estimating active and passive drag relevant to competitive swimming. Studies were identified using a mixed-model approach comprising a search of SCOPUS and Web of Science data bases, follow-up of relevant studies cited in manuscripts from the primary search, and additional studies identified by the co-authors based on their specific areas of fluid dynamics expertise. The utility and limitations of active and passive drag methods were critically discussed with reference to primary research domains in this field, 'swimmer morphology' and 'technique analysis'. This overview and the subsequent discussions provide implications for researchers when selecting an appropriate method to measure resistive forces (active or passive) relevant to improving performance in free-swimming.


Assuntos
Projetos de Pesquisa , Natação , Humanos , Fenômenos Biomecânicos , Hidrodinâmica , Bibliometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA