Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(4): 280, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292869

RESUMO

Mining Ag, Cu, Pb, and Zn sulfides by flotation produces great volume of residues, which oxidized through time and release acid solutions. Leachates from tailing heaps are a concern due to the risk of surface water pollution. Hydroxyapatite nanoparticles may remove trace elements from acid leachate collected from an oxidized tailing heap (pH ranged 1.69 ± 0.3 to 2.23 ± 0.16; [SO42-] = 58 ± 0.67 to 60.69 ± 0.39 mmol). Based on the batch experiments under standard conditions, the average removal efficiency was 96%, 92%, 86%, and 67% for Cd, Pb, Zn, and Cu, respectively. The Zn adsorption was modeled by the Freundlich equation, but Cd, Cu, and Pb isotherms do not fit to Freundlich nor Lagmuir equations. Adsorption and other mechanisms occur during trace elements removal by hydroxyapatite. In the polymetallic system, trace elements saturate the specific surface of hydroxyapatite in the following order Zn, Cd, Cu, and Pb. The pH values must be higher than 7.5 to adsorb trace elements. The dose of 3.8% of hydroxyapatite to acid mine drainage removed efficiently > 80% of the soluble Fe, Cu, Mn, Zn, Cd, Ni, and Pb: 4020.0, 37.3, 34.8, 432.0, 4.4, 0.7, and 0.11 mg L-1 from leachate A and 3357.1, 46.6, 27.8, 569.0, 4.7, 0.6, and 1.7 from leachate B, respectively. The application of 0.7% of hydroxyapatite decreased the extractable Pb in unoxidized tailing heaps from 272 to 100 mg kg-1. It is likely to use hydroxyapatite to control trace element mobility from mine residues to surrounding soils and surface water.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Adsorção , Durapatita , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Oligoelementos/análise
2.
J Toxicol Environ Health A ; 81(14): 604-619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29737961

RESUMO

Cobalt ferrite nanoparticles (NPs) have received increasing attention due to their widespread therapeutic and agricultural applicability. In the environmental field, dry powder- and ferrofluid-suspended cobalt ferrite NPs were found to be useful for removing heavy metals and metalloids from water, while diluted suspensions of cobalt ferrite NP have been promisingly applied in medicine. However, the potential toxicological implications of widespread exposure are still unknown. Since cobalt ferrite NPs are considered residual wastes of environmental or medical applications, plants may serve as a point-of-entry for engineered nanomaterials as a result of consumption of these plants. Thus, the aim of this study was to assess the effects of dry powder and fresh cobalt ferrite NP on wheat plants. Seven-day assays were conducted, using quartz sand as the plant growth substrate. The toxicity end points measured were seed germination, root and shoot lengths, total cobalt (Co) and iron (Fe) accumulation, photosynthetic pigment production, protein (PRT) production, and activities of catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). Increasing total Co and Fe in plant tissues indicated that wheat plants were exposed to cobalt ferrite NP. Seed germination and shoot length were not sufficiently sensitive toxicity end points. The effective concentration (EC50) that diminished root length of plants by 50% was 1963 mg/kg for fresh ferrite NPs and 5023 mg/kg for powder ferrite NP. Hence, fresh ferrite NPs were more toxic than powder NP. Plant stress was indicated by a significant decrease in photosynthetic pigments. CAT, APX, and GPX antioxidant enzymatic activity suggested the generation of reactive oxygen species and oxidative damage induced by cobalt ferrite NP. More studies are thus necessary to determine whether the benefits of using these NPs outweigh the risks.


Assuntos
Cobalto/toxicidade , Compostos Férricos/toxicidade , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Cobalto/química , Compostos Férricos/química , Germinação/efeitos dos fármacos , Nanopartículas Metálicas , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/biossíntese , Pós/química , Pós/toxicidade , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Testes de Toxicidade , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-22320693

RESUMO

This study was conducted to assess the effect of tannery sludge on the bush bean (Phaseolus vulgaris) cultivars fully-grown on a culture sandy soil, as tannery sludge is valuable to improve soil fertility but long term studies evaluating the effect on fully grown plants are scarce. Tannery sludge amendments (0, 0.77, 1.54, 3.08 and 6.16 g tannery sludge kg(-1) soil) were characterized and the main heavy metals identified (Cr, Mn, Fe, K, and Zn) later on sequentially and singly extracted, for soil fractionation and availability determination, respectively. Metals showed different fractionation and availability patterns, being the most toxic metal (Cr) found to primarily bind to the carbonate fraction in soil, while almost 10% of the total Cr was available for plant uptake. In the green house experiments, bush bean cultivars exposed to increasing tannery sludge amendments were evaluated at different plant stages. Metal accumulation and physiological parameters (chlorophyll, carotenoids, nitrate reductase activity and dry weight) were determined. Toxicity was primarily due to Cr, stimulating or affecting the response of physiological parameters and suppressing seed formation at the highest tannery sludge ratio. Metals were mainly accumulated in the roots of bush beans, diminishing in the upper part of the plants with minimal translocation to seeds, supposing little risk for human consumption. Additionally, important correlations, antagonistic and synergistic relationships were observed between the extracted metals and metal accumulation in plant tissues.


Assuntos
Metais Pesados/análise , Metais Pesados/toxicidade , Phaseolus/efeitos dos fármacos , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Carbonatos/análise , Carotenoides/metabolismo , Fracionamento Químico , Clorofila/metabolismo , Resíduos Industriais/análise , Metais Pesados/química , Nitrato Redutase/metabolismo , Óxidos/análise , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/química , Curtume
4.
J Hazard Mater ; 161(2-3): 1288-98, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18554782

RESUMO

A field study of the natural attenuation occurring in a slag heap contaminated with high available cadmium was carried out. The aims of this research were: to determine plants colonizing this slag heap; to analyze colonization and morphological biodiversity of spores of arbuscular mycorrhizal fungi (AMF); to determine spore distribution in undisturbed samples; to know mycelium and glomalin abundance in the rhizosphere of these plants, and to investigate glomalin participation in Cd-stabilization. Forming vegetal islands, 22 different pioneering plant species from 11 families were colonizing the slag heap. The most common plants were species of Fabaceae, Asteraceae and Poaceae. Almost all plants were hosting AMF in their roots, and spores belonging to Gigaspora, Glomus, Scutellospora and Acaulospora species were observed. Micromorphological analysis showed that spores were related to decomposing vegetal residues and excrements, which means that mesofauna is contributing to their dispersion in the groundmass. Mycelium mass ranged from 0.11 to 26.3 mg/g, which contained between 13 and 75 mg of glomalin/g. Slag-extracted total glomalin was between 0.36 and 4.74 mg/g. Cadmium sequestered by glomalin extracted from either slag or mycelium was 0.028 mg/g. The ecological implication of these results is that organisms occupying vegetal patches are modifying mine residues, which contribute to soil formation.


Assuntos
Cádmio/química , Fungos/metabolismo , Micorrizas/química , Plantas/microbiologia , Ligas , Biodegradação Ambiental , Biodiversidade , Conservação dos Recursos Naturais , Ecologia , Concentração de Íons de Hidrogênio , Minerais/química , Micélio/metabolismo , Raízes de Plantas/metabolismo , Solo
5.
J Hazard Mater ; 141(3): 630-6, 2007 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-16920257

RESUMO

Phytoremediation is a technology for extracting or inactivating pollutants. Echinochloa polystachya [(H.B.K.) Hitchcock] (Poaceae) is a fast-growing perennial grass that is common in tropical areas and is often found in oil-polluted soils that contain high concentrations of heavy metals. However, its tolerance to heavy metals, and its ability to accumulate them, has yet to be investigated. Here we test the hypothesis that E. polystachya is able to accumulate high concentrations of cadmium (Cd). Plants were grown hydroponically with different levels of Cd(2+) (0, 0.25, 1, 2, 10, 50, and 100mgL(-1)), and were found to be tolerant to Cd(2+) at all levels. No metal-toxicity symptoms were observed at any Cd(2+) level. Root and leaves Cd concentrations were 299+/-13.93 and 233+/-8.77mgkg(-1) (on a dry weight basis), respectively. Scanning electron microscopy showed the inclusion of Cd within the xylem; this result was confirmed by energy dispersive X-ray spectrometry. Leaf tissues also accumulated Cd, especially within the bulliform cells of the epidermis. We conclude that E. polystachya is a hyperaccumulator of Cd. While data for other metals are not yet available, E. polystachya shows promise in the phytoextraction of Cd from polluted tropical sites.


Assuntos
Cádmio/metabolismo , Echinochloa/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Echinochloa/crescimento & desenvolvimento , Hidroponia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Xilema/metabolismo
6.
Environ Pollut ; 144(1): 84-92, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16631286

RESUMO

Four sites were selected for collection of plants growing on polluted soil developed on tailings from Ag, Au, and Zn mines at the Zacatecas state in Mexico. Trace element concentrations varied between sites, the most polluted area was at El Bote mine near to Zacatecas city. The ranges of total concentration in soil were as follows: Cd 11-47, Ni 19-26, Pb 232-695, Mn 1132-2400, Cu 134-186 and Zn 116-827 mg kg(-1) air-dried soil weight. All soil samples had concentrations above typical values for non-polluted soils from the same soil types (Cd 0.6+/-0.3, Ni 52+/-4, Pb 41+/-3mg kg(-1)). However, for the majority of samples the DTPA-extractable element concentrations were less than 10% of the total. Some of the wild plants are potentially metal tolerant, because they were able to grow in highly polluted substrates. Plant metal analysis revealed that most species did not translocate metals to their aerial parts, therefore they behave as excluder plants. Polygonum aviculare accumulated Zn (9236 mg kg(-1)) at concentrations near to the criteria for hyperaccumulator plants. Jatropha dioica also accumulated high Zn (6249 mg kg(-1)) concentrations.


Assuntos
Monitoramento Ambiental/métodos , Resíduos Industriais , Metais/metabolismo , Mineração , Plantas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Transporte Biológico , Cádmio/análise , Cádmio/metabolismo , Cádmio/farmacocinética , Cobre/análise , Cobre/metabolismo , Cobre/farmacocinética , Ouro , Concentração de Íons de Hidrogênio , Chumbo/análise , Chumbo/metabolismo , Chumbo/farmacocinética , Manganês/análise , Manganês/metabolismo , Manganês/farmacocinética , Metais/análise , Metais/farmacocinética , México , Níquel/análise , Níquel/metabolismo , Níquel/farmacocinética , Plantas/química , Prata , Solo/análise , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Especificidade da Espécie , Zinco/análise , Zinco/metabolismo , Zinco/farmacocinética
7.
Sci Total Environ ; 565: 941-950, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26806072

RESUMO

The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd(2+) and Cr(6+) levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67mgCd(2)(+)kg(-1) and 5.53mgCr(6+)kg(-1). However, when magnetite NPs (1000mgkg(-1)) were added, the root length of the plants increased by 25 and 50%. Cd(2+) and Cr(6+) showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated.


Assuntos
Cádmio/toxicidade , Cromo/toxicidade , Nanopartículas de Magnetita/toxicidade , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Ácido Cítrico/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
8.
Environ Pollut ; 130(3): 317-23, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15182965

RESUMO

Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducted. Experiment 1 showed that glomalin extracted from two polluted soils contained 1.6-4.3 mg Cu, 0.02-0.08 mg Cd, and 0.62-1.12 mg Pb/g glomalin. Experiment 2 showed that glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 mg Cu/g in vitro. Experiment 3 tested in vivo differences in Cu sequestration by Cu-tolerant and non-tolerant isolates of Glomus mosseae colonizing sorghum. Plants were fed with nutrient solution containing 0.5, 10 or 20 microM of Cu. Although no differences between isolates were detected, mean values for the 20 microM Cu level were 1.6, 0.4, and 0.3 mg Cu/g for glomalin extracted from hyphae, from sand after removal of hyphae and from hyphae attached to roots, respectively. Glomalin should be considered for biostabilization leading to remediation of polluted soils.


Assuntos
Proteínas Fúngicas/fisiologia , Micorrizas/metabolismo , Poluentes do Solo/farmacocinética , Biodegradação Ambiental , Cobre/análise , Cobre/farmacocinética , Cobre/farmacologia , Relação Dose-Resposta a Droga , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/farmacologia , Micorrizas/efeitos dos fármacos , Poluentes do Solo/análise , Poluentes do Solo/farmacologia , Sorghum/microbiologia
9.
Int J Phytoremediation ; 15(2): 127-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23487991

RESUMO

The aim of this research was to identify adapted native plant species with potential for use in phytoremediation of a metalliferous mine tailings heap in Guerrero, Mexico. Physicochemical characterization, total, DTPA-extractable and fractionation of metals in rhizospheric and non-rhizopheric samples were carried out to gain information about their potential risks. Metal concentrations in plant and bioconcentration factors (BCF) were also determined. Organic matter (OM) and total N contents were higher in the rhizospheric samples, which could improve the conditions for plant establishment. Total Cu, Zn, and Pb concentration were above those for normal soils. The highest metals concentration was found in the residual and organic fractions. Eleven plant species were recorded at the site; three behaved as metal accumulator plants: Gnaphalium chartaceum (accumulator of Cu, Mn, Zn, and Ph), Wigandia urens and Senecio salignus (1027 and 2477 mg kg(-1) of Zn). These species and Brickellia sp. presented high Pb-BCF; they may be suitable for metals phytoextraction. Seven species behaved as excluder plants; Guardiola tulocarpus, Juniperus flaccida, and Ficus goldmanii, presented low BCFs. These species are well suited to cope with the toxic conditions, and they could be propagated for revegetation and stabilization of these residues and to decrease metal bioavailability.


Assuntos
Magnoliopsida/metabolismo , Metais Pesados/metabolismo , Pteridaceae/metabolismo , Solo/química , Biodegradação Ambiental , Fenômenos Químicos , Cobre/análise , Cobre/metabolismo , Flores/metabolismo , Chumbo/análise , Chumbo/metabolismo , Manganês/análise , Manganês/metabolismo , Metais Pesados/análise , México , Mineração , Folhas de Planta/metabolismo , Poluentes do Solo , Zinco/análise , Zinco/metabolismo
10.
J Hazard Mater ; 163(2-3): 829-34, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18814962

RESUMO

This work assessed the effect of soil amended with tannery sludge (0, 500, 1000, 2000, 4000 and 8000 mg Cr kg(-1)soil), Cr(3+) as CrCl(3).6H(2)O (0, 100, 250, 500, 1000 and 2000 mg Cr kg(-1)soil), and Cr(6+) as K(2)Cr(2)O(7) (0, 25, 50, 100, 200 and 500 mg Cr kg(-1)soil) on wheat, oat and sorghum plants. Seed germination, seedling growth (root and shoot) and Cr accumulation in dry tissue were measured. Toxicological parameters; medium effective concentration, no observed adverse effect concentration and low observed adverse effect concentration were determined. Root growth was the most sensitive assessment of Cr toxicity (P<0.05). There was a significant correlation (P<0.0001) between Cr accumulation in dry tissue and toxic effects on seedling growth. The three Cr sources had different accumulation and mobility patterns; tannery sludge was less toxic for all three plant species, followed by CrCl(3).6H(2)O and K(2)Cr(2)O(7).


Assuntos
Cromo/toxicidade , Monitoramento Ambiental/métodos , Plantas/efeitos dos fármacos , Esgotos/efeitos adversos , Solo , Avena , Germinação/efeitos dos fármacos , Desenvolvimento Vegetal , Sorghum , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA