Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298413

RESUMO

Bisphenol A (BPA) is a ubiquitous synthetic compound used as a monomer in the production of polycarbonate plastics and epoxy resins. Even at low doses, BPA has been associated with the molecular progression of diseases such as obesity, metabolic syndrome, and hormone-regulated cancers due to its activity as an endocrine-disrupting chemical (EDC). Consequently, the use of BPA has been regulated worldwide by different health agencies. BPA structural analogs such as bisphenol S and bisphenol F (BPS and BPF) have emerged as industrial alternatives, but their biological activity in the molecular progression of cancer remains unclear. Prostate cancer (PCa) is a hormone-dependent cancer, and the role of BPA structural analogs in PCa progression is still undescribed. In this work, we use an in vitro model to characterize the transcriptomic effect of low-concentration exposure to bisphenol A, S, or F in the two main stages of the disease: androgen dependency (LNCaP) and resistance (PC-3). Our findings demonstrated that the low concentration exposure to each bisphenol induced a differential effect over PCa cell lines, which marks the relevance of studying the effect of EDC compounds through all the stages of the disease.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Linhagem Celular , Neoplasias da Próstata/genética , Hormônios
2.
Pharmacology ; 106(11-12): 588-596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265779

RESUMO

INTRODUCTION: Genetic variants could aid in predicting antidiabetic drug response by associating them with markers of glucose control, such as glycated hemoglobin (HbA1c). However, pharmacogenetic implementation for antidiabetics is still under development, as the list of actionable markers is being populated and validated. This study explores potential associations between genetic variants and plasma levels of HbA1c in 100 patients under treatment with metformin. METHODS: HbA1c was measured in a clinical chemistry analyzer (Roche), genotyping was performed in an Illumina-GSA array and data were analyzed using PLINK. Association and prediction models were developed using R and a 10-fold cross-validation approach. RESULTS: We identified genetic variants on SLC47A1, SLC28A1, ABCG2, TBC1D4, and ARID5B that can explain up to 55% of the interindividual variability of HbA1c plasma levels in diabetic patients under treatment. Variants on SLC47A1, SLC28A1, and ABCG2 likely impact the pharmacokinetics (PK) of metformin, while the role of the two latter can be related to insulin resistance and regulation of adipogenesis. CONCLUSIONS: Our results confirm previous genetic associations and point to previously unassociated gene variants for metformin PK and glucose control.


Assuntos
Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Ativadoras de GTPase/genética , Hemoglobinas Glicadas/genética , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea , Índice de Massa Corporal , Feminino , Genótipo , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte de Cátions Orgânicos/genética
3.
Cancer Cell Int ; 20: 312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694934

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second cause of cancer related death in North American men. Androgens play an important role in its progression by regulating the expression of several genes including fusion ones that results from structural chromosome rearrangements. TMPRSS2-ERG is a fusion gene commonly observed in over 50% of PCa tumors, and its expression can be transcriptionally regulated by the androgen receptor (AR) given its androgen responsive elements. TMPRSS2-ERG could be involved in epithelial-mesenchymal transition (EMT) during tumor development. ERG has been reported as a key transcriptional factor in the AR-ERG-WNT network where five SFRP proteins, structurally similar to WNT ligands and considered to be WNT pathway antagonists, can regulate signaling in the extracellular space  by binding to WNT proteins or Frizzled receptors. It has been shown that over-expression of SFRP1 protein can regulate the transcriptional activity of AR and inhibits the formation of colonies in LNCaP cells. However, the effect of SFRP1 has been controversial since differential effects have been observed depending on its concentration and tissue location. In this study, we explored the role of exogenous SFRP1 protein in cells expressing the TMPRSS2-ERG fusion. METHODS: To evaluate the effect of exogenous SFRP1 protein on PCa cells expressing TMPRSS2-ERG, we performed in silico analysis from TCGA cohort, expression assays by RT-qPCR and Western blot, cell viability and cell cycle measurements by cytometry, migration and invasion assays by xCELLigance system and murine xenografts. RESULTS: We demonstrated that SFRP1 protein increased ERG expression by promoting cellular migration in vitro and increasing tumor growth in vivo in PCa cells with the TMPRSS2-ERG fusion. CONCLUSIONS: These results suggest the possible role of exogenous SFRP1 protein as a modulator of AR-ERG-WNT signaling network in cells positive to TMPRSS2-ERG. Further, investigation is needed to determine if SFRP1 protein could be a target in against this type of PCa.

4.
Nutr Cancer ; 72(5): 768-777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31448633

RESUMO

Background: Breast and prostate cancer are frequently diagnosed neoplasias in women and men around the world. The signaling of the androgen receptor (AR) influences the development of both tumors. Since therapies focused to block the receptor's activity have not been fully effective, and have shown side effects, therapies based on natural compounds are promissory complementary alternatives in its treatment. Objective: The aim of this study was to determine the effect of anthocyanins from blue corn in cancer cell lines. Methods: We analyzed the antiproliferative effect of anthocyanins from raw and alkali-processed (tortillas) Mixteco blue corn in breast and prostate cancer cell lines MDA-MB-453 (subtype: triple negative) and LNCaP using methyltiazlyl-tetrazolium (MTT) and flow cytometry (FCM). The combination of anthocyanins and 2-amino-N-quinolin-8-yl-benzenesulfonamide (QBS) or nocodazole also were evaluated. The anthocyanins were isolated trough column chromatography (XAD-7).Results: Our results demonstrated that anthocyanin specially the ones obtained from tortillas, decreased cell viability and arrested cell cycle in G1 phase inducing apoptosis. Cytometry analysis shows an increased effect on apoptosis of MDA-MB-453 and LNCaP cells when tortilla anthocyanins and QBS were combined. Conclusions: This is the first report that suggest that anthocyanins from blue corn have an effect in cell cycle and viability so they could serve as adjuvants for breast and prostate cancer therapies and may prompt to deepen investigations to decipher its molecular properties. AbbreviationsARAndrogen ReceptorCIDIIRInterdisciplinary Center for Research on Integral Regional DevelopmentDHT5α-DihydrotestosteroneEREstrogen ReceptorPRProgesterone ReceptorQBSAmino-N-quinolin-8-yl-benzenesulfonamide.


Assuntos
Antocianinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Zea mays/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Flavonoides/farmacologia , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo
5.
Rev Invest Clin ; 73(3)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32488227

RESUMO

Pharmacogenomics (PGx), one of the several tools of precision medicine, has been slowly implemented in the clinic during the past decades. This process generally starts with direct and indirect genotype-phenotype associations of gene variants and drug efficacy, or adverse drug reactions, followed by replication and validation studies. Institutional efforts led by the PGx Research Network, The PGx Knowledge Base, and The Clinical Pharmacogenetics Implementation Consortium, mine all available data for further validation or research in additional populations. This data mining gives rise to a detailed classification of over 200 druggene pairs which, with enough documentation, may become part of a publishable guideline to aid clinicians in drug selection and dosing using genetics. The US Food and Drug Administration utilizes these guidelines to issue warnings and recommendations for specific drugs and their cautioning serves clinicians and pharmacists worldwide. Here, we aim to discuss the steps of this process and list existing actionable drug-gene pairs. Moreover, we describe the current status of PGx knowledge in populations from Mexico for actionable variants on the 19 genes listed by present PGx guidelines affecting 47 drugs. Our review collects current allele frequency information for these actionable variants, lists gaps of PGx information for relevant markers, and highlights the importance of continuing PGx research in Native and Mestizo populations.

6.
Rev Invest Clin ; 71(4): 246-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448785

RESUMO

BACKGROUND: Schizophrenia (SCZ) and dementia, often related, are two of the most common neuropsychiatric diseases; epidemiological studies have shown that SCZ patients present a 2-fold increased risk for dementia compared to non-schizophrenic individuals. We explored the presence of rare and novel damaging gene variants in patients diagnosed with late-onset dementia of Alzheimer's type (DAT) or SCZ. METHODS: We included 7 DAT and 12 SCZ patients and performed high-depth targeted sequencing of 184 genes. RESULTS: We found novel and rare damaging variants in 18 genes in these Mexican patients. Carriers of these variants showed extreme phenotypes, including, treatment-resistant SCZ or cognitive decline. Furthermore, we found a variation on ABCC1 as a possible link between psychosis and cognitive impairment. DISCUSSION: As an exploratory analysis, we report some interesting variations that should be corroborated in larger sample size studies.


Assuntos
Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Demência/fisiopatologia , Esquizofrenia/fisiopatologia , Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Demência/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , México , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fenótipo , Esquizofrenia/genética
7.
Pharm Res ; 33(11): 2644-52, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27387170

RESUMO

PURPOSE: Information on genetic variants that affect the pharmacokinetics and pharmacodynamics (PK/PD) of drugs in different populations from Mexico is still an ongoing endeavor. Here, we investigate allele frequencies on pharmacogenetic targets in Mexican Mestizos and Natives from three different States and its association with drug efficacy in individuals receiving either anticoagulants or antipsychotic drugs. METHODS: Natives from three different states and Mestizo patients receiving acenocoumarol or antipsychotics were genotyped using the DMET microarray (Affymetrix). RESULTS: We provide a collection of genetic variants that indicate that there are 3-times more variation than similarities between populations from Mexico and major continental groups. These differences were observed in several relevant targets including ABCB1, SLCO1A1, NAT2, UGTs, TYMS, VKORC1, and NR1I3. Moreover, Mexican Mestizos also showed allele frequency differences when compared to Natives for variants on DPYD, ADH1A, CYP3A4, SLC28A3, and SLC28A1. Significant allele differences also arose among the three Native groups here studied, mostly for transporters of the ABC-binding cassette and the solute carrier gene family. Finally, we explored genotype-drug response associations and pinpointed variants on FMOs (coumarins), and GSTM1 (haloperidol). CONCLUSIONS: These findings confirm previous results and further delve into the pharmacogenetics of Mexican populations including different Native groups.


Assuntos
Anticoagulantes/uso terapêutico , Antipsicóticos/uso terapêutico , Variantes Farmacogenômicos , Acenocumarol/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Receptor Constitutivo de Androstano , Feminino , Frequência do Gene , Genética Populacional , Genótipo , Humanos , Indígenas Norte-Americanos , Masculino , México , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
8.
Arch Med Res ; 55(6): 103046, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013263

RESUMO

BACKGROUND: The aging population prompts studying risk factors and markers to predict healthy aging. Telomere length is a promising candidate for assessing various age-related traits. AIM OF THE STUDY: To investigate the association between physical performance and telomere length. METHODS: We enrolled 323 older Mexican adults from the "Cohort of Obesity, Sarcopenia, and Frailty of Older Mexican Adults" affiliated with the Instituto Mexicano del Seguro Social and assessed their physical performance using the Short Physical Performance Battery, dividing participants into low (≤7) and high (>7) groups. Absolute telomere length was determined by qPCR, and individuals were classified into short (≤4.22 kb) and long (>4.22 kb) groups. We calculated the mean and adjusted mean, considering sex and age, among others, with 95% CI. We estimated the effect size between physical performance and telomere length using Cohen's d for unequal group sizes and calculated the odds ratio for physical performance based on telomere length. RESULTS: Participants with low physical performance had significantly shorter telomeres (mean 4.14.44.7 kb, adjusted mean 3.54.04.5 kb, p <0.001), while those with high physical performance exhibited longer telomeres (mean 5.55.75.9 kb, adjusted mean 4.75.35.8 kb, p <0.001), with a medium-to-high telomere length effect size (d = 0.762). The odds of low physical activity increased 2.13.66.1-fold per kb of telomere attrition (adjOR 1.73.36.3, p <0.001). CONCLUSION: Decreased physical function is associated with shorter telomere length. Absolute telomere length presents a promising biomarker for distinguishing between healthy and unhealthy aging, warranting further investigation.

9.
Biogerontology ; 14(6): 663-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23948799

RESUMO

The role of classical lipids in aging diseases and human longevity has been widely acknowledged. Triglyceride and cholesterol concentrations are clinically assessed to infer the risk of cardiovascular disease while larger lipoprotein particle size and low triglyceride levels have been identified as markers of human longevity. The rise of lipidomics as a branch of metabolomics has provided an additional layer of accuracy to pinpoint specific lipids and its association with aging diseases and longevity. The molecular composition and concentration of lipid species determine their cellular localization, metabolism, and consequently, their impact in disease and health. For example, low density lipoproteins are the main carriers of sphingomyelins and ceramides, while high density lipoproteins are mostly loaded with ether phosphocholines, partly explaining their opposing roles in atherogenesis. Moreover, the identification of specific lipid species in aging diseases and longevity would aid to clarify how these lipids alter health and influence longevity. For instance, ether phosphocholines PC (O-34:1) and PC (O-34:3) have been positively associated with longevity and negatively with diabetes, and hypertension, but other species of phosphocholines show no effect or an opposite association with these traits confirming the relevance of the identification of molecular lipid species to tackle our understanding of healthy aging and disease. Up-to-date, a minor fraction of the human plasma lipidome has been associated to healthy aging and longevity, further research would pinpoint toward specific lipidomic profiles as potential markers of healthy aging and metabolic diseases.


Assuntos
Envelhecimento/sangue , Nível de Saúde , Lipídeos/sangue , Longevidade , Fatores Etários , Idoso , Animais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Caracteres Sexuais , Fatores Sexuais
10.
J Pers Med ; 13(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37763120

RESUMO

Fluoxetine is one of the most prescribed antidepressants, yet it still faces challenges due to high intersubject variability in patient response. Mainly metabolized by the highly polymorphic gene CYP2D6, important differences in plasma concentrations after the same doses are found among individuals. This study investigated the association of fluoxetine pharmacokinetics (PK) with pharmacogenetic variants. A bioequivalence crossover trial (two sequences, two periods) was conducted with fluoxetine 20 mg capsules, in 24 healthy subjects. Blood samples for fluoxetine determination were collected up to 72 h post-dose. Subjects were genotyped and single nucleotide variants (SNV) were selected using a candidate gene approach, and then associated with the PK parameters. Bioequivalence was confirmed for the test formulation. We found 34 SNV on 10 genes with a quantifiable impact on the PK of fluoxetine in the randomized controlled trial. Out of those, 29 SNVs belong to 7 CYPs (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5), and 5 SNVs to 3 genes impacting the pharmacodynamics and efficacy of fluoxetine (SLC6A4, TPH1, ABCB1). Moreover, decreased/no function SNVs of CYP2D6 (rs1065852, rs28371703, rs1135840) and CYP2C19 (rs12769205) were confirmed phenotypically. Our research contributes to deepening the catalog of genotype-phenotype associations in pharmacokinetics, aiming to increase pharmacogenomics knowledge for rational treatment schemes of antidepressants.

11.
Genes (Basel) ; 14(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37372394

RESUMO

Atherogenesis and dyslipidemia increase the risk of cardiovascular disease, which is the leading cause of death in developed countries. While blood lipid levels have been studied as disease predictors, their accuracy in predicting cardiovascular risk is limited due to their high interindividual and interpopulation variability. The lipid ratios, atherogenic index of plasma (AIP = log TG/HDL-C) and the Castelli risk index 2 (CI2 = LDL-C/HDL-C), have been proposed as better predictors of cardiovascular risk, but the genetic variability associated with these ratios has not been investigated. This study aimed to identify genetic associations with these indexes. The study population (n = 426) included males (40%) and females (60%) aged 18-52 years (mean 39 years); the Infinium GSA array was used for genotyping. Regression models were developed using R and PLINK. AIP was associated with variation on APOC3, KCND3, CYBA, CCDC141/TTN, and ARRB1 (p-value < 2.1 × 10-6). The three former were previously associated with blood lipids, while CI2 was associated with variants on DIPK2B, LIPC, and 10q21.3 rs11251177 (p-value 1.1 × 10-7). The latter was previously linked to coronary atherosclerosis and hypertension. KCND3 rs6703437 was associated with both indexes. This study is the first to characterize the potential link between genetic variation and atherogenic indexes, AIP, and CI2, highlighting the relationship between genetic variation and dyslipidemia predictors. These results also contribute to consolidating the genetics of blood lipid and lipid indexes.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Dislipidemias , Masculino , Feminino , Humanos , Estudos de Casos e Controles , Aterosclerose/genética , Doença da Artéria Coronariana/genética , Lipídeos , Dislipidemias/genética
12.
Front Cell Dev Biol ; 11: 1096923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968194

RESUMO

Prostate cancer (PCa) ranks second in incidence and sixth in deaths globally. The treatment of patients with castration-resistant prostate cancer (CRPC) continues to be a significant clinical problem. Emerging evidence suggests that prostate cancer progression toward castration resistance is associated with paracrine signals from the stroma. SFRP1 is one of the extracellular proteins that modulate the WNT pathway, and it has been identified as a mediator of stromal epithelium communication. The WNT pathway is involved in processes such as cell proliferation, differentiation, cell anchoring, apoptosis, and cell cycle regulation as well as the regulation of stem cell populations in the prostatic epithelium. In the present study, we explored the role of exogenous SFRP1 on the stem cell phenotype in prostate cancer. The results reveal that cancer stem cell markers are significantly increased by exogenous SFRP1 treatments, as well as the downstream target genes of the Wnt/-catenin pathway. The pluripotent transcription factors SOX2, NANOG, and OCT4 were also up-regulated. Furthermore, SFRP1 promoted prostate cancer stem cell (PCSC) properties in vitro, including tumorsphere formation, migration, bicalutamide resistance, and decreased apoptosis. Taken together, our results indicate that SFRP1 participates in the paracrine signaling of epithelial cells, influencing them and positively regulating the stem cell phenotype through deregulation of the WNT/ß-catenin pathway, which could contribute to disease progression and therapeutic failure. This research increases our molecular understanding of how CRPC progresses, which could help us find new ways to diagnose and treat the disease.

13.
Cancers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627176

RESUMO

Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.

14.
Metabolites ; 12(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208267

RESUMO

The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.

15.
Pharmacol Rep ; 74(1): 257-262, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34091879

RESUMO

BACKGROUND: Thiopurines are effectively prescribed for immune and oncology diseases but their toxicity leads to severe myelosuppression. Therefore, TPMT genetic variants have been used to adjust dosing for poor and intermediate metabolizers, significantly preventing adverse drug reactions. In 2018, the Clinical Pharmacogenetics Implementation Consortium included NUDT15 rs116855232 to also guide thiopurines dosing. This variant is not present in Caucasians but have been identified in 10% of Asian and Latin American populations. Despite research efforts to portrait the world's genetic variation, few studies include the investigation of NUDT15 in large samples. METHODS: Fifteen NUDT15 and TPMT variants were retrieved for 1270 Mestizos and 20 Natives genotyped from previous studies using the GSA-Illumina microarray. After bioinformatic quality controls, genotypes were available for 12 variants, TPMT rs2842949, rs2842950, rs2842934, rs1800460, rs12201199, rs12663332, rs2518463, rs4449636, rs12529220, rs3931660, rs200591577, and NUD15 rs116855232. Allele frequencies and haplotypes were assessed using PLINK, R, and Haploview. Dosing inferences were described according to the Clinical Pharmacogenomics Implementation Consortium. RESULTS: We report relevant populations differences in actionable TPMT*3B and NUDT15 rs116855232 as the allele frequency of the former is higher in Mestizos compared to Caucasians, and for the latter we report twofold and 1.35-fold higher allele frequencies in Natives and Mestizos compared to Mexicans from Los Angeles. CONCLUSIONS: TPMT*3B and NUDT15 rs116855232 actionable markers showed population differences that ought to be considered as dosing inferences highlight the relevance of routine genotyping of these variants for the prescription of thiopurines in Mexican populations.


Assuntos
Mercaptopurina/farmacologia , Metiltransferases/genética , Pirofosfatases/genética , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Feminino , Frequência do Gene , Humanos , Masculino , México/epidemiologia , Farmacogenética/métodos , Variantes Farmacogenômicos
16.
Braz J Psychiatry ; 44(2): 164-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34037083

RESUMO

OBJECTIVE: Individuals with schizophrenia and substance use disorders have a poor prognosis and increased psychiatric symptoms. The present study aimed to explore the association of 106 genes in individuals with schizophrenia and comorbid substance use through a next-generation sequencing (NGS) analysis and different in silico algorithms. METHODS: We included 105 individuals diagnosed with schizophrenia and a family history of schizophrenia, of whom 49 (46.67%) presented comorbid substance use. Using NGS, we sequenced 106 genes previously associated with schizophrenia. Logistic regression models were used to assess differences in allele frequencies, and a generalized gene-set analysis was performed at the gene level. Functional annotations were performed using different algorithms and databases. RESULTS: We identified a total of 3,109 variants, of which 25 were associated with schizophrenia and comorbid substance use and were located in regulatory and coding regions. We found low-frequency variants in COMT p.Ala72Ser, independently of p.Val158Met, that were associated with substance use. The endocannabinoid functional variant FAAH p.Pro129Thr was also associated with substance use. CONCLUSIONS: Genetic variants of genes related to dopaminergic and cannabinoid neurotransmitter systems were associated with comorbid substance use in schizophrenia. Nevertheless, more studies with larger sample sizes are needed to confirm our findings.


Assuntos
Amidoidrolases , Catecol O-Metiltransferase , Esquizofrenia , Transtornos Relacionados ao Uso de Substâncias , Amidoidrolases/genética , Catecol O-Metiltransferase/genética , Frequência do Gene/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/psicologia
17.
Microbiol Spectr ; 10(5): e0125222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102651

RESUMO

Tuberculosis (TB) remains one of the most important infectious diseases globally. Establishing a resistance profile from the initial TB diagnosis is a priority. Rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, and Whole Genome Sequencing (WGS) needs culture prior to next-generation sequencing (NGS), limiting their clinical value. Targeted sequencing (TS) from clinical samples avoids these drawbacks, providing a signature of genetic markers that can be associated with drug resistance and phylogeny. In this study, a proof-of-concept protocol was developed for detecting genomic variants associated with drug resistance and for the phylogenetic classification of Mycobacterium Tuberculosis (Mtb) in sputum samples. Initially, a set of Mtb reference strains from the WHO were sequenced (WGS and TS). The results from the protocol agreed >95% with WHO reported data and phenotypic drug susceptibility testing (pDST). Lineage genetics results were 100% concordant with those derived from WGS. After that, the TS protocol was applied to sputum samples from TB patients to detect resistance to first- and second-line drugs and derive phylogeny. The accuracy was >90% for all evaluated drugs, except Eto/Pto (77.8%), and 100% were phylogenetically classified. The results indicate that the described protocol, which affords the complete drug resistance profile and phylogeny of Mtb from sputum, could be useful in the clinical area, advancing toward more personalized and more effective treatments in the near future. IMPORTANCE The COVID-19 pandemic negatively affected the progress in accessing essential Tuberculosis (TB) services and reducing the burden of TB disease, resulting in a decreased detection of new cases and increased deaths. Generating molecular diagnostic tests with faster results without losing reliability is considered a priority. Specifically, developing an antimicrobial resistance profile from the initial stages of TB diagnosis is essential to ensure appropriate treatment. Currently available rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, limiting their clinical value. In this work, targeted sequencing on sputum samples from TB patients was used to identify Mycobacterium tuberculosis mutations in genes associated with drug resistance and to derive a phylogeny of the infecting strain. This protocol constitutes a proof-of-concept toward the goal of helping clinicians select a timely and appropriate treatment by providing them with actionable information beyond current molecular approaches.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Escarro , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Filogenia , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes , Marcadores Genéticos , Pandemias , Tuberculose/microbiologia , Resistência a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
18.
Biomolecules ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36008950

RESUMO

Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer-siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.


Assuntos
Neoplasias da Próstata , Androgênios , Animais , Humanos , Masculino , Mamíferos , Oligonucleotídeos , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno
19.
Methods Mol Biol ; 2174: 245-254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813254

RESUMO

In the treatment of cancer, over the last decade different drugs delivery systems have been developed to increase therapeutic specificity to improve drug's efficacy, and safety by increasing bioavailability. Among these systems, small nucleic acid molecules with a three-dimensional structure, known as aptamers, have shown several advantages. Several approaches to design aptamers require modifications from starting libraries of DNA sequences. Here, we describe cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment), a sophisticated technique based on RNA aptamers as a starting point, that enables design functional aptamers as drug-delivery tools. This variation of the original SELEX technique using RNA aptamers instead DNA aptamers allows to obtain aptamers that are internalized in prostate cancer cells using as a starting point an RNA aptamer library with 76 nucleotides. The major advantage of this technique is that modifications are not required in the initial library, as initial T7 transcription promoter or 2'F nucleotides before sequencing.


Assuntos
Aptâmeros de Nucleotídeos/genética , Neoplasias da Próstata/genética , Técnica de Seleção de Aptâmeros/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Neoplasias da Próstata/patologia
20.
Front Genet ; 12: 673180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111194

RESUMO

Neoplasic transformation is a continuous process that occurs in the body. Even before clinical signs, the immune system is capable of recognizing these aberrant cells and reacting to suppress them. However, transformed cells acquire the ability to evade innate and adaptive immune defenses through the secretion of molecules that inhibit immune effector functions, resulting in tumor progression. Hormones have the ability to modulate the immune system and are involved in the pathogenesis of autoimmune diseases, and cancer. Hormones can control both the innate and adaptive immune systems in men and women. For example androgens reduce immunity through modulating the production of pro-inflammatory and anti-inflammatory mediators. Women are more prone than men to suffer from autoimmune diseases such as systemic lupus erythematosus, psoriasis and others. This is linked to female hormones modulating the immune system. Patients with autoimmune diseases consistently have an increased risk of cancer, either as a result of underlying immune system dysregulation or as a side effect of pharmaceutical treatments. Epidemiological data on cancer incidence emphasize the link between the immune system and cancer. We outline and illustrate the occurrence of hormone-related cancer and its relationship to the immune system or autoimmune diseases in this review. It is obvious that some observations are contentious and require explanation of molecular mechanisms and validation. As a result, future research should clarify the molecular pathways involved, including any causal relationships, in order to eventually allocate information that will aid in the treatment of hormone-sensitive cancer and autoimmune illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA