Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(6): 4516-4536, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615998

RESUMO

Essential oils (EOs) are a class of natural products that exhibit potent antimicrobial properties against a broad spectrum of bacteria. Inhibition diameters (IDs) and minimum inhibitory concentrations (MICs) are the typical measures of antimicrobial activity for extracts and EOs obtained from Cinnamomum, Salvia, and Mentha species. This study used a meta-analytical regression analysis to investigate the correlation between ID and MIC measurements and the variability in antimicrobial susceptibility tests. By utilizing pooled ID models, this study revealed significant differences in foodborne pathogens' susceptibility to extracts, which were dependent on both the plant species and the methodology employed (p < .05). Cassia showed the highest efficacy against Salmonella spp., exhibiting a pooled ID of 26.24 mm, while cinnamon demonstrated the highest efficacy against Bacillus cereus, with a pooled ID of 23.35 mm. Mint extract showed the greatest efficacy against Escherichia coli and Staphylococcus aureus. Interestingly, cinnamon extract demonstrated the lowest effect against Shiga toxin-producing E. coli, with a pooled ID of only 8.07 mm, whereas its EOs were the most effective against this bacterial strain. The study found that plant species influenced the MIC, while the methodology did not affect MIC measurements (p > .05). An inverse correlation between ID and MIC measurements was identified (p < .0001). These findings suggest that extracts and EOs obtained from Cinnamomum, Salvia, and Mentha spp. have the potential to inhibit bacterial growth. The study highlights the importance of considering various factors that may influence ID and MIC measurements when assessing the effectiveness of antimicrobial agents.


Assuntos
Cinnamomum , Mentha , Óleos Voláteis , Salvia , Óleos Voláteis/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Bactérias
2.
Rocz Panstw Zakl Hig ; 74(1): 49-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010381

RESUMO

Background: Physalis peruviana L. fruit contains nutritional and bioactive compounds of immense importance to public health and represents a potential ingredient for the development of functional foods and beverages. Objective: This study aimed to determine the chemical and nutritional composition as well as the antioxidant capacity of the P. peruviana L. fruit grown in Peru in three areas of the Central Andean region. Material and methods: Proximal and physicochemical analyses and estimation of mineral content, vitamin C, total carotenoids, total polyphenols, and antioxidant capacity (2, 2-diphenyl-1-picrylhydrazyl [DPPH] and 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) [ABTS] assays) were performed using standardized methods. Results: The fruits were collected from three regions of the Peruvian Andes (Ancash, Cajamarca, and Cusco). The results showed that the content of potassium (306.54-327.60 mg/100 g) and iron (12.93-14.47 mg/kg) was prominent. The Physalis fruit had high levels of vitamin C (47.20-52.20 mg/100 g), total polyphenols (68.17-83.40 mg equivalents of gallic acid/100 g), and carotenoids (1.12-1.73 mg ß-carotene/100 g). Higher values for antioxidant capacity were obtained with the ABTS method (896-1003.33 µmol Trolox/100 g) than with the DPPH method (290-309 µmol Trolox/100 g). Conclusions: This study confirms that the P. peruviana fruit has properties that could provide important health benefits and that it could be used for the development of functional foods and food supplement.


Assuntos
Antioxidantes , Physalis , Humanos , Antioxidantes/análise , Frutas/química , Physalis/química , Peru , Ácido Ascórbico/análise , Carotenoides/análise , Polifenóis/análise , Extratos Vegetais/química , Vitaminas
3.
Food Microbiol ; 91: 103545, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539971

RESUMO

The fate of Listeria monocytogenes during ripening of artisanal Minas semi-hard cheese, as influenced by cheese intrinsic properties and by autochthonous (naturally present) or intentionally-added anti-listerial lactic acid bacteria (LAB) was modeled. Selected LAB strains with anti-listerial capacity were added or not to raw or pasteurized milk to prepare 4 cheese treatments. Counts of LAB and L. monocytogenes, pH, temperature and water activity were determined throughout cheese ripening (22 days, 22±1ᵒC). Different approaches were adopted to model the effect of LAB on L. monocytogenes: an independent approach using the Huang primary model to describe LAB growth and the linear decay model to describe pathogen inactivation; the Huang-Cardinal [pH] model using the effect of pH variation in a dynamic tertiary approach; and the Jameson-effect with Nmax tot model which simultaneously describes L. monocytogenes and LAB fate. L. monocytogenes inactivation occurred in both treatments with added LAB and inactivation was faster in raw milk cheese (-0.0260 h-1) vs. pasteurized milk cheese (-0.0182 h-1), as estimated by the linear decay model. Better goodness-of-fit was achieved for the cheeses without added LAB when the Huang primary model was used. A faster and great pH decline was detected for cheeses with added LAB, and the Huang-Cardinal [pH] model predicted higher pathogen growth rate in cheese produced with raw milk, but greater L. monocytogenes final concentration in pasteurized milk cheese. The Jameson-effect model with Nmax tot predicted that LAB suppressed pathogen growth in all treatments, except in the treatment with pasteurized milk and no LAB addition. The Huang-Cardinal [pH] model was more accurate in modeling L. monocytogenes kinetics as a function of pH changes than was the Jameson-effect model with Nmax tot as a function of LAB inhibitory effect based on the goodness-of-fit measures. The Jameson-effect model may however be a better competition model since it can more easily represent L. monocytogenes growth and death. This study presents crucial kinetic data on L. monocytogenes behavior in the presence of competing microbiota in Minas semi-hard cheese under dynamic conditions.


Assuntos
Queijo/microbiologia , Lactobacillales/fisiologia , Listeria monocytogenes/fisiologia , Animais , Antibiose , Queijo/análise , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Viabilidade Microbiana , Leite/química , Leite/microbiologia , Modelos Biológicos , Temperatura , Água/análise
4.
Food Microbiol ; 79: 48-60, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30621875

RESUMO

This study compares dynamic tertiary and competition models for L. monocytogenes growth as a function of intrinsic properties of a traditional Brazilian soft cheese and the inhibitory effect of lactic acid bacteria (LAB) during refrigerated storage. Cheeses were prepared from raw or pasteurized milk with or without the addition of selected LAB with known anti-listerial activity. Cheeses were analyzed for LAB and L. monocytogenes counts, pH and water activity (aw) throughout cold storage. Two approaches were used to describe the effect of LAB on L. monocytogenes: a Huang-Cardinal model that considers the effect of pH and aw variation in a dynamic kinetic analysis framework; and microbial competition models, including Lotka-Volterra and Jameson-effect variants, describing the simultaneous growth of L. monocytogenes and LAB. The Jameson-effect with γ and the Lotka-Volterra models produced models with statistically significant coefficients that characterized the inhibitory effect of selected LAB on L. monocytogenes in Minas fresh cheese. The Huang-Cardinal model [pH] outperformed both competition models. Taking aw change into account did not improve the fit quality of the Huang-Cardinal [pH] model. These models for Minas soft cheese should be valuable for future microbial risk assessments for this culturally important traditional cheese.


Assuntos
Queijo/microbiologia , Temperatura Baixa , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Modelos Biológicos , Animais , Antibiose , Brasil , Queijo/análise , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio , Cinética , Lactobacillales/química , Lactobacillales/crescimento & desenvolvimento , Leite/microbiologia , Água/análise
5.
Food Microbiol ; 73: 288-297, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29526214

RESUMO

Artisanal raw milk cheeses are highly appreciated dairy products in Brazil and ensuring their microbiological safety has been a great need. This study reports the isolation and characterization of lactic acid bacteria (LAB) strains with anti-listerial activity, and their effects on Listeria monocytogenes during refrigerated shelf-life of soft Minas cheese and ripening of semi-hard Minas cheese. LAB strains (n = 891) isolated from Minas artisanal cheeses (n = 244) were assessed for anti-listerial activity by deferred antagonism assay at 37 °C and 7 °C. The treatments comprised the production of soft or semi-hard Minas cheeses using raw or pasteurized milk, and including the addition of selected LAB only [Lactobacillus brevis 2-392, Lactobacillus plantarum 1-399 and 4 Enterococcus faecalis (1-37, 2-49, 2-388 and 1-400)], L. monocytogenes only, selected LAB co-inoculated with L. monocytogenes, or without any added cultures. At 37 °C, 48.1% of LAB isolates showed anti-listerial capacity and 77.5% maintained activity at 7 °C. Selected LAB strains presented a bacteriostatic effect on L. monocytogenes in soft cheese. L. monocytogenes was inactivated during the ripening of semi-hard cheeses by the mix of LAB added. Times to attain a 4 log-reduction of L. monocytogenes were 15 and 21 days for semi-hard cheeses produced with raw and pasteurized milk, respectively. LAB with anti-listerial activity isolated from artisanal Minas cheeses can comprise an additional barrier to L. monocytogenes growth during the refrigerated storage of soft cheese and help shorten the ripening period of semi-hard cheeses aged at ambient temperature.


Assuntos
Antibiose , Queijo/microbiologia , Lactobacillales/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Brasil , Queijo/análise , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Lactobacillales/genética , Lactobacillales/isolamento & purificação , Listeria monocytogenes/fisiologia , Temperatura , Fatores de Tempo
6.
Appl Environ Microbiol ; 81(23): 8008-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26362982

RESUMO

The aim of this study was to perform a meta-analysis of the effects of sanitizing treatments of fresh produce on Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes. From 55 primary studies found to report on such effects, 40 were selected based on specific criteria, leading to more than 1,000 data on mean log reductions of these three bacterial pathogens impairing the safety of fresh produce. Data were partitioned to build three meta-analytical models that could allow the assessment of differences in mean log reductions among pathogens, fresh produce, and sanitizers. Moderating variables assessed in the meta-analytical models included type of fresh produce, type of sanitizer, concentration, and treatment time and temperature. Further, a proposal was done to classify the sanitizers according to bactericidal efficacy by means of a meta-analytical dendrogram. The results indicated that both time and temperature significantly affected the mean log reductions of the sanitizing treatment (P < 0.0001). In general, sanitizer treatments led to lower mean log reductions when applied to leafy greens (for example, 0.68 log reductions [0.00 to 1.37] achieved in lettuce) compared to other, nonleafy vegetables (for example, 3.04 mean log reductions [2.32 to 3.76] obtained for carrots). Among the pathogens, E. coli O157:H7 was more resistant to ozone (1.6 mean log reductions), while L. monocytogenes and Salmonella presented high resistance to organic acids, such as citric acid, acetic acid, and lactic acid (∼3.0 mean log reductions). With regard to the sanitizers, it has been found that slightly acidic electrolyzed water, acidified sodium chlorite, and the gaseous chlorine dioxide clustered together, indicating that they possessed the strongest bactericidal effect. The results reported seem to be an important achievement for advancing the global understanding of the effectiveness of sanitizers for microbial safety of fresh produce.


Assuntos
Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Microbiologia de Alimentos , Frutas/microbiologia , Listeria monocytogenes/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Verduras/microbiologia
7.
Food Microbiol ; 46: 541-552, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475327

RESUMO

In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.


Assuntos
Alicyclobacillus/crescimento & desenvolvimento , Bebidas/microbiologia , Frutas/microbiologia , Alicyclobacillus/química , Bebidas/análise , Manipulação de Alimentos , Frutas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Biológicos
8.
Foods ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397575

RESUMO

Alheira is a naturally fermented meat sausage traditionally made in the Portuguese region of Trás-os-Montes. Lactic acid bacteria (LAB) are the dominant microorganisms in alheira and can endow it with various technological properties. This study aimed (1) to characterize technological features and in vitro antimicrobial activity of LAB isolated from alheira, and (2) to reveal associations between such phenotypic characteristics and the isolates species identified through amplification and sequencing of the 16S ribosomal gene. Sixty-two LAB isolates were identified and Enterococcus (E.) faecium corresponded to 32.3% of isolates, followed by Leuconostoc (L.) mesenteroides (19.4%) and Latilactobacillus (Lb.) sakei (17.7%), aligning with previous research on traditional Portuguese fermented meat sausages. The phenotypic analysis of LAB isolates indicated diverse acidification capacities, proteolytic activities, and inhibitory effects against foodborne pathogens Listeria (L.) monocytogenes, Salmonella (S.) Typhimurium and Staphylococcus (S.) aureus. Overall, lactobacilli displayed high inhibition activity against the pathogens S. aureus, L. monocytogenes, and S. Typhimurium. Although the mechanisms for the inhibition of pathogen growth need to be further elucidated, these findings enhance our understanding of LAB diversity and functionality in alheira sausages, contributing to product safety and quality.

9.
Foods ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338495

RESUMO

A review of the published quantitative risk assessment (QRA) models of L. monocytogenes in meat and meat products was performed, with the objective of appraising the intervention strategies deemed suitable for implementation along the food chain as well as their relative effectiveness. A systematic review retrieved 23 QRA models; most of them (87%) focused on ready-to-eat meat products and the majority (78%) also covered short supply chains (end processing/retail to consumption, or consumption only). The processing-to-table scope was the choice of models for processed meats such as chorizo, bulk-cooked meat, fermented sausage and dry-cured pork, in which the effects of processing were simulated. Sensitivity analysis demonstrated the importance of obtaining accurate estimates for lag time, growth rate and maximum microbial density, in particular when affected by growth inhibitors and lactic acid bacteria. In the case of deli meats, QRA models showed that delicatessen meats sliced at retail were associated with a higher risk of listeriosis than manufacture pre-packed deli meats. Many models converged on the fact that (1) controlling cold storage temperature led to greater reductions in the final risk than decreasing the time to consumption and, furthermore, that (2) lower numbers and less prevalence of L. monocytogenes at the end of processing were far more effective than keeping low temperatures and/or short times during retail and/or home storage. Therefore, future listeriosis QRA models for meat products should encompass a processing module in order to assess the intervention strategies that lead to lower numbers and prevalence, such as the use of bio-preservation and novel technologies. Future models should be built upon accurate microbial kinetic parameters, and should realistically represent cross-contamination events along the food chain.

10.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472829

RESUMO

Invasive listeriosis, due to its severe nature in susceptible populations, has been the focus of many quantitative risk assessment (QRA) models aiming to provide a valuable guide in future risk management efforts. A review of the published QRA models of Listeria monocytogenes in seafood was performed, with the objective of appraising the effectiveness of the control strategies at different points along the food chain. It is worth noting, however, that the outcomes of a QRA model are context-specific, and influenced by the country and target population, the assumptions that are employed, and the model architecture itself. Studies containing QRA models were retrieved through a literature search using properly connected keywords on Scopus and PubMed®. All 13 QRA models that were recovered were of short scope, covering, at most, the period from the end of processing to consumption; the majority (85%) focused on smoked or gravad fish. Since the modelled pathways commenced with the packaged product, none of the QRA models addressed cross-contamination events. Many models agreed that keeping the product's temperature at 4.0-4.5 °C leads to greater reductions in the final risk of listeriosis than reducing the shelf life by one week and that the effectiveness of both measures can be surpassed by reducing the initial occurrence of L. monocytogenes in the product (at the end of processing). It is, therefore, necessary that future QRA models for RTE seafood contain a processing module that can provide insight into intervention strategies that can retard L. monocytogenes' growth, such as the use of bacteriocins, ad hoc starter cultures and/or organic acids, and other strategies seeking to reduce cross-contamination at the facilities, such as stringent controls for sanitation procedures. Since risk estimates were shown to be moderately driven by growth kinetic parameters, namely, the exponential growth rate, the minimum temperature for growth, and the maximum population density, further work is needed to reduce uncertainties.

11.
Foods ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611415

RESUMO

A review of quantitative risk assessment (QRA) models of Listeria monocytogenes in produce was carried out, with the objective of appraising and contrasting the effectiveness of the control strategies placed along the food chains. Despite nine of the thirteen QRA models recovered being focused on fresh or RTE leafy greens, none of them represented important factors or sources of contamination in the primary production, such as the type of cultivation, water, fertilisers or irrigation method/practices. Cross-contamination at processing and during consumer's handling was modelled using transfer rates, which were shown to moderately drive the final risk of listeriosis, therefore highlighting the importance of accurately representing the transfer coefficient parameters. Many QRA models coincided in the fact that temperature fluctuations at retail or temperature abuse at home were key factors contributing to increasing the risk of listeriosis. In addition to a primary module that could help assess current on-farm practices and potential control measures, future QRA models for minimally processed produce should also contain a refined sanitisation module able to estimate the effectiveness of various sanitisers as a function of type, concentration and exposure time. Finally, L. monocytogenes growth in the products down the supply chain should be estimated by using realistic time-temperature trajectories, and validated microbial kinetic parameters, both of them currently available in the literature.

12.
Food Res Int ; 188: 114408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823853

RESUMO

Biopreservation strategies such as the use of Mediterranean plant extracts to ensure food safety are promising to deal with the emergence of antimicrobial resistances and the overreliance on food chemical additives. In the last few decades, antimicrobial susceptibility testing (AST) for evaluating the in vitro antibacterial potential of plant extracts against the most relevant foodborne pathogens has been widely reported in the literature. The current meta-analysis aimed to summarise and analyse the extensive evidence available in the literature regarding the in vitro antimicrobial capability of Allium, Ocimum and Thymus spp. extracts against foodborne pathogens. A systematic review was carried out to gather data on AST results of these extracts against Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli and Bacillus cereus, including inhibition diameters (ID) and minimum inhibitory concentrations (MIC). A total of 742 records were gathered from a raw collection of 2,065 articles. Weighted mixed-effect linear models were adjusted to data to obtain pooled ID, pooled MIC and the relationship between both model estimations and observations. The pooled results revealed B. cereus as the most susceptible bacteria to Allium sativum (pooled ID = 20.64 ± 0.61 mm) by diffusion methods and S. aureus (pooled MIC = 0.146 mg/mL) by dilution methods. Diffusion methods did not yield conclusive results for Ocimum spp. extracts; however, the lowest pooled MIC was obtained for S. aureus (0.263 mg/mL). Among the foodborne pathogens evaluated, B. cereus showed the highest sensitivity to Thymus spp. extracts by both diffusion and dilution methods (pooled ID = 28.90 ± 2.34 mm and MIC = 0.075 mg/mL). The methodology used for plant extraction was found to not significantly affect MIC values (p > 0.05). Overall, the antimicrobial effectiveness of the studied extracts against Gram-positive and Gram-negative bacteria was demonstrated. Finally, the robustness of the meta-regression model was confirmed, also revealing an inversely proportional correlation between the ID and MIC measurements (p < 0.0001). These results provide a robust scientific basis on the factors affecting the in vitro antimicrobial efficacy of extracts from Mediterranean plants. They also provide valuable information for stakeholders involved in their industrial application in food, including producers, regulatory agencies and consumers which demand green-labelled foods.


Assuntos
Allium , Antibacterianos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Ocimum , Extratos Vegetais , Thymus (Planta) , Thymus (Planta)/química , Extratos Vegetais/farmacologia , Ocimum/química , Allium/química , Antibacterianos/farmacologia , Inocuidade dos Alimentos , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento
13.
Ital J Food Saf ; 13(2): 12210, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38887591

RESUMO

In this pilot study, we compared the metagenomic profiles of different types of artisanal fermented meat products collected in Italy, Greece, Portugal, and Morocco to investigate their taxonomic profile, also in relation to the presence of foodborne pathogens and antimicrobial resistance genes. In addition, technical replicates of the same biological sample were tested to estimate the reproducibility of shotgun metagenomics. The taxonomic analysis showed a high level of variability between different fermented meat products at both the phylum and genus levels. Staphylococcus aureus was identified with the highest abundance in Italian fermented meat; Escherichia coli in fermented meat from Morocco; Salmonella enterica in fermented meat from Greece; Klebsiella pneumoniae and Yersinia enterocolitica in fermented meat from Portugal. The fungi Aspergillus, Neosartoria, Emericella, Penicillum and Debaryomyces showed a negative correlation with Lactococcus, Enterococcus, Streptococcus, Leuconostoc and Lactobacillus. The resistome analysis indicated that genes conferring resistance to aminoglycoside, macrolide, and tetracycline were widely spread in all samples. Our results showed that the reproducibility between technical replicates tested by shotgun metagenomic was very high under the same conditions of analysis (either DNA extraction, library preparation, sequencing analysis, and bioinformatic analysis), considering both the degree of overlapping and the pairwise correlation.

14.
Food Chem ; 451: 139308, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688095

RESUMO

This study assessed the chemical profiles and bioactivities of the infusions, decoctions and hydroethanolic extracts of tarragon, basil and French lavender. The extracts were chemically characterised (HPLC-DAD-ESI/MS) and their bioactivities were evaluated in vitro. All extracts revealed antimicrobial, antifungal and antioxidant properties. French lavender extracts showed higher total phenolic content, regardless of the extraction method used, and antioxidant and antitumour capacities, but no anti-inflammatory action. All basil and two of the tarragon extracts revealed anti-inflammatory power. Thus, tarragon, basil and French lavender extracts may be considered for inclusion in foods, as preservatives or functional ingredients. Nonetheless, further studies must be conducted to evaluate the pharmacokinetic parameters of the bioactive compounds.


Assuntos
Antioxidantes , Artemisia , Lavandula , Ocimum basilicum , Extratos Vegetais , Polifenóis , Ocimum basilicum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/farmacologia , Lavandula/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Artemisia/química , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão
16.
Foods ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137240

RESUMO

A review of the published quantitative risk assessment (QRA) models of L. monocytogenes in dairy products was undertaken in order to identify and appraise the relative effectiveness of control measures and intervention strategies implemented at primary production, processing, retail, and consumer practices. A systematic literature search retrieved 18 QRA models, most of them (9) investigated raw and pasteurized milk cheeses, with the majority covering long supply chains (4 farm-to-table and 3 processing-to-table scopes). On-farm contamination sources, either from shedding animals or from the broad environment, have been demonstrated by different QRA models to impact the risk of listeriosis, in particular for raw milk cheeses. Through scenarios and sensitivity analysis, QRA models demonstrated the importance of the modeled growth rate and lag phase duration and showed that the risk contribution of consumers' practices is greater than in retail conditions. Storage temperature was proven to be more determinant of the final risk than storage time. Despite the pathogen's known ability to reside in damp spots or niches, re-contamination and/or cross-contamination were modeled in only two QRA studies. Future QRA models in dairy products should entail the full farm-to-table scope, should represent cross-contamination and the use of novel technologies, and should estimate L. monocytogenes growth more accurately by means of better-informed kinetic parameters and realistic time-temperature trajectories.

17.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685139

RESUMO

The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.

18.
Foods ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509778

RESUMO

This study characterises the effect of a customised starter culture (CSC) and plant extracts (lemon balm, sage, and spearmint) on Staphylococcus aureus (SA) and lactic acid bacteria (LAB) kinetics in goat's raw milk soft cheeses. Raw milk cheeses were produced with and without the CSC and plant extracts, and analysed for pH, SA, and LAB counts throughout ripening. The pH change over maturation was described by an empirical decay function. To assess the effect of each bio-preservative on SA, dynamic Bigelow-type models were adjusted, while their effect on LAB was evaluated by classical Huang models and dynamic Huang-Cardinal models. The models showed that the bio-preservatives decreased the time necessary for a one-log reduction but generally affected the cheese pH drop and SA decay rates (logDref = 0.621-1.190 days; controls: 0.796-0.996 days). Spearmint and sage extracts affected the LAB specific growth rate (0.503 and 1.749 ln CFU/g day-1; corresponding controls: 1.421 and 0.806 ln CFU/g day-1), while lemon balm showed no impact (p > 0.05). The Huang-Cardinal models uncovered different optimum specific growth rates of indigenous LAB (1.560-1.705 ln CFU/g day-1) and LAB of cheeses with CSC (0.979-1.198 ln CFU/g day-1). The models produced validate the potential of the tested bio-preservatives to reduce SA, while identifying the impact of such strategies on the fermentation process.

19.
Ital J Food Saf ; 12(4): 11559, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38116370

RESUMO

In cheese-making, a starter culture composed of adequately chosen lactic acid bacteria (LAB) may be suitable to ensure the rapid acidification of milk, improve textural and sensory characteristics, and avoid pathogen proliferation. In this work, 232 LAB isolates collected from artisanal goat's raw milk cheeses produced in Portugal were evaluated for their antimicrobial capacity (at 10 and 37°C), as well as their acidifying and proteolytic properties. Among the 232 isolates, at least 98% of those isolated in De Man- Rogosa-Sharpe (MRS) agar presented antagonism against Listeria monocytogenes, Salmonella Typhimurium, or Staphylococcus aureus, whereas less than 28.1% of M17-isolated LAB showed antagonism against these pathogens. M17-isolated LAB displayed better results than MRS ones in terms of acidifying capacity. As for the proteolytic assay, only 2 MRS isolates showed casein hydrolysis capacity. Principal component analyses and molecular characterization of a subset of selected isolates were conducted to identify those with promising capacities and to correlate the identified LAB genera and species with their antimicrobial, acidifying, and/or proteolytic properties. Lactococcus strains were associated with the highest acidifying capacity, whereas Leuconostoc and Lacticaseibacillus strains were more related to antimicrobial capacities. Leuconostoc mesenteroides, Lactococcus lactis, and Lacticaseibacillus paracasei were the predominant organisms found. The results of this work highlight various strains with pathogen inhibition capacity and suitable technological properties to be included in a customized starter culture. In future work, it is necessary to appropriately define the starter culture and implement it in the cheese-making process to evaluate if the in-vitro capacities are observable in a real food system.

20.
Foods ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36981191

RESUMO

Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilution methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentrations (MICs), respectively. In order to investigate potential sources of variability in antimicrobial susceptibility testing results and to assess whether a correlation exists between ID and MIC measurements, meta-analytical regression models were built using in vitro data obtained through a systematic literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and in some cases, the plant species and methodology utilised impacted the measurements obtained (p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21 and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B. cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID (20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on MIC (p > 0.05). The ID-MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to prevent bacterial growth. Additionally, this study underscores several variables that can impact ID and MIC measurements and expose the correlation between the two types of results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA