RESUMO
Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (µk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated µk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low µk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, µk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.
Assuntos
Cartilagem Articular , Iridoides , Osteoartrite , Humanos , Lubrificação , Glutaral , Colágeno , Osteoartrite/tratamento farmacológico , Fricção , Estresse MecânicoRESUMO
Strawberry root and crown rot caused by the fungus Neopestalotiopsis rosae is an emerging disease that has caused yield losses reaching 70% in Mexico and other regions worldwide. This research evaluated the effects of biological and chemical fungicides applied as preventive and curative applications for controlling root and crown rot caused by N. rosae in strawberries under greenhouse conditions. Treatments included these chemical fungicides: prochloraz, prochloraz+thiram, cyprodinil+fludioxonil, difenoconazole+azoxystrobin, iprodione, captan, thiram, pydiflumetofen+fludioxonil, fluxapyroxad+pyraclostrobin, and hymexazol; each applied at commercial doses. Also tested were biological treatments based on Trichoderma koningiopsis, Trichoderma asperellum, Streptomyces sp., and Bacillus amyloliquefaciens strain D747 (B. velezensis). Disease incidence, severity, plant mortality, root length, and dry weight were determined. Results showed that overall, preventive applications of the fungicides pydiflumetofen+fludioxonil, cyprodinil+fludioxonil, and prochloraz resulted in the smallest area under the disease progress curve, and lowest final disease incidence, severity, and plant mortality. An intermediate group of effective treatments entailed hymexazol, iprodione, T. asperellum, and T. koningiopsis (50-75% efficacy). Treatments with greater efficacy (99 to 100%), prochloraz pydiflumetofen+fludioxonil, cyprodinil+fludioxonil, and prochloraz, also had maximal total plant biomass vis-à-vis the untreated control. In contrast, each treatment's efficacy was significantly reduced when applied curatively (0 to 37% treatment efficacy). These results suggest that certain treatments are useful for controlling strawberry root and crown rot caused by N. rosae, when applied preventively (as root dipping). These results will contribute to design more effective management programs of root rot and crown rot caused by N. rosae on strawberry.
RESUMO
Fusarium wilt of blackberry (FWB) is an emerging disease caused by a Fusarium oxysporum species complex. More than 3,000 ha of blackberry (Rubus spp.) crops have been lost in Mexico since 2011. The objectives of this research were: to evaluate the sensitivity of pathogenic F. oxysporum isolates recovered from symptomatic blackberry plants to fungicides with different modes of action; to assess the potential of these fungicides and plant resistance inducers against FWB in the greenhouse; and to determine the effects of commercial biofungicides and two indigenous strains of Trichoderma spp. on the incidence of FWB. The EC50 values of the fungicides prochloraz, thiabendazole, azoxystrobin, thiophanate-methyl, difenoconazole, triflumizole, and potassium phosphite for six pathogenic F. oxysporum isolates were determined. In a separate experiment, the fungicides acibenzolar-s-methyl (ASM), potassium phosphite, and commercial biofungicides, as well as two soil microbial inoculants and two indigenous Trichoderma strains, were tested for protection against wilt development in blackberry plants in the greenhouse. Prochloraz showed an average sensitivity for EC50 of 0.01 µg ml-1 for the tested F. oxysporum isolates, followed by difenoconazole and thiabendazole. Prochloraz and ASM proved to be the most effective treatments in the greenhouse. In contrast, potassium phosphite was ineffective in both the in vitro and in vivo experiments. The soil bioinoculants MicroSoil, Baktillis, T. koningiopsis, and T. asperellum significantly reduced the incidence of disease in the greenhouse. These results provide evidence for the potential of the various tools as useful components of integrated FWB management in the field.
Assuntos
Fungicidas Industriais , Fusarium , Rubus , Trichoderma , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Solo , TiabendazolRESUMO
In the 2017 strawberry season, several transplant losses reaching 50% were observed in Zamora, Michoacán Valley, Mexico, due to a new fungal disease associated with root rot, crown rot, and leaf spot. In this year the disease appeared consistently and increased in the following seasons, becoming a concern among strawberry growers. Thus, the aim of this research was to determine the etiology of the disease and to determine the in vitro effect of fungicides on mycelial growth of the pathogen. Fungal isolates were obtained from symptomatic strawberry plants of the cultivars 'Albion' and 'Festival' and were processed to obtain monoconidial isolates. Detailed morphological analysis was conducted. Concatenated phylogenetic reconstruction was conducted by amplifying and sequencing the translation elongation factor 1 α, ß-tubulin partial gene, and the internal transcribed spacer region of rDNA. Pathogenicity tests involving inoculation of leaves and crowns reproduced the same symptoms as those observed in the field, fulfilling Koch's postulates. Morphology and phylogenetic reconstruction indicated that the causal agent of the described symptoms was Neopestalotiopsis rosae, marking the first report anywhere in the world of this species infecting strawberry. N. rosae was sensitive to cyprodinil + fludioxonil, captan, iprodione, difenoconazole, and prochloraz.
Assuntos
Fragaria , Micoses , DNA Fúngico , Humanos , México , Filogenia , Doenças das PlantasRESUMO
In-use vehicles which are high emitters (HEVs) make a large contribution to the emissions inventory. It is not known, however, whether HEVs share common emissions characteristics, and particularly the effect of ethanol blends. We study this by first examining laboratory measurements of exhaust and evaporative emissions on ethanol blends containing 21%, 26% and 30% aromatics, and a reference fuel formulated with methyl-tertiary butyl ether (MTBE). Switching from MTBE to ethanol fuels on HEVs shows no effect on the total emissions of regulated pollutants, but 1,3-butadiene emissions would increased substantially while the emissions of total carbonyls would not be affected except in the case of acetaldehyde, which would increase with EtOH. The ozone-forming potential of exhaust and evaporative emissions would be less using the EtOH blends and specific reactivity will not be incremented. Lowering the vapour pressure of the gasoline and increasing the proportions of alkylate and isomerate in the composition produces an ethanol-blended fuel with lower environmental impact both in normal vehicles and HEVs.
Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Automóveis , Etanol/química , Gasolina/análise , Emissões de Veículos/análise , Emissões de Veículos/prevenção & controle , Etanol/análiseRESUMO
Cerenkov radiation (CR) can be used as an internal light source in photodynamic therapy (PDT). Methotrexate (MTX) and paclitaxel (PTX), chemotherapeutic agents with wide clinical use, have characteristics of photosensitizers (PS). This work evaluates the possibility of photoexciting MTX and PTX with CR from 18F-FDG to produce reactive oxygen species (ROS) capable of inducing cytotoxicity. PTX did not produce ROS when excited by CR from 18F-FDG, so it is not useful for PDT. In contrast, MTX produces 1O2 (detected by ABMA) in amounts sufficient to significantly decrease the viability of the T47D cells. MTX solutions of 100 nM combined with 18F-FDG activities of 50 (1.85 MBq) and 100 µCi (3.7 MBq) produced a significant decrease in cell viability to (50.09 ± 4.95) and (47.96 ± 11.19)%, respectively, compared to MTX (66.29 ± 5.92)% and 18F-FDG (91.35 ± 7.00% for 50 µCi and 99.43 ± 11.03% for 100 µCi) alone. Using the CellRox Green reagent, the intracellular production of ROS was confirmed as the main mechanism of cytotoxicity. The results confirm the therapeutic potential of photoactivation with CR and the synergy of the combined treatment with chemotherapy + photodynamic therapy (CMT + PDT). The combination of chemotherapeutic agents with PS properties and ß-emitting radiopharmaceuticals, previously approved for clinical use, will make it possible to shorten the evaluation stages of new CMT + PDT systems.
RESUMO
During the last 10 years, high atmospheric concentrations of airborne particles recorded in the Mexico City metropolitan area have caused concern because of their potential harmful effects on human health. Four monitoring campaigns have been carried out in the Mexico City metropolitan area during 2000-2002 at three sites: (1) Xalostoc, located in an industrial region; (2) La Merced, located in a commercial area; and (3) Pedregal, located in a residential area. Results of gravimetric and chemical analyses of 330 samples of particulate matter (PM) with an aerodynamic diameter less than 2.5 microm (PM2.5) and PM with an aerodynamic diameter less than 10 microm (PM10) indicate that (1) PM2.5/PM10 average ratios were 0.42, 0.46, and 0.52 for Xalostoc, La Merced, and Pedregal, respectively; (2) the highest PM2.5 and PM10 concentrations were found at the industrial site; (3) PM2.5 and PM10 concentrations were lower at nighttime; (4) PM2.5 and PM10 spatial averages concentrations were 35 and 76 microg/m3, respectively; and (5) when the PM2.5 standard was exceeded, nitrate, sulfate, ammonium, organic carbon, and elemental carbon concentrations were high. Twenty-four hour averaged PM2.5 concentrations in Mexico City and Sao Paulo were similar to those recorded in the 1980s in Los Angeles. PM10 concentrations were comparable in Sao Paulo and Mexico City but 3-fold lower than those found in Santiago.
Assuntos
Poluentes Atmosféricos/análise , Metais Pesados/análise , Aerossóis , Cidades , Monitoramento Ambiental , México , Tamanho da PartículaRESUMO
Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.