RESUMO
The endothelium contains morphologically similar cells throughout the vasculature, but individual cells along the length of a single vascular tree or in different regional circulations function dissimilarly. When observations made in large arteries are extrapolated to explain the function of endothelial cells (ECs) in the resistance vasculature, only a fraction of these observations are consistent between artery sizes. To what extent endothelial (EC) and vascular smooth muscle cells (VSMCs) from different arteriolar segments of the same tissue differ phenotypically at the single-cell level remains unknown. Therefore, single-cell RNA-seq (10x Genomics) was performed using a 10X Genomics Chromium system. Cells were enzymatically digested from large (>300 µm) and small (<150 µm) mesenteric arteries from nine adult male Sprague-Dawley rats, pooled to create six samples (3 rats/sample, 3 samples/group). After normalized integration, the dataset was scaled before unsupervised cell clustering and cluster visualization using UMAP plots. Differential gene expression analysis allowed us to infer the biological identity of different clusters. Our analysis revealed 630 and 641 differentially expressed genes (DEGs) between conduit and resistance arteries for ECs and VSMCs, respectively. Gene ontology analysis (GO-Biological Processes, GOBP) of scRNA-seq data discovered 562 and 270 pathways for ECs and VSMCs, respectively, that differed between large and small arteries. We identified eight and seven unique ECs and VSMCs subpopulations, respectively, with DEGs and pathways identified for each cluster. These results and this dataset allow the discovery and support of novel hypotheses needed to identify mechanisms that determine the phenotypic heterogeneity between conduit and resistance arteries.
Assuntos
Células Endoteliais , Transcriptoma , Ratos , Animais , Transcriptoma/genética , Células Endoteliais/metabolismo , Ratos Sprague-Dawley , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Artérias Mesentéricas , Perfilação da Expressão GênicaRESUMO
Hypoxia is the reduction of alveolar partial pressure of oxygen ([Formula: see text]). Military members and people who practice recreational activities from moderate to high altitudes are at risk for hypoxic exposure. Hypoxemia's signs and symptoms vary from asymptomatic to severe responses, such as excessive hypoxic ventilatory responses and residual neurobehavioral impairment. Therefore, it is essential to identify hypoxia-induced biomarkers to indicate people with exposure to hypoxia. Advances have been made in understanding physiological responses to hypoxia, including elevations in circulating levels of endothelin 1 (ET-1) and microRNA 21 (miR-21) and reduction in circulating levels of hydrogen sulfide (H2S). Although the levels of these factors change upon exposure to hypoxia, it is unclear if these changes are sustained on return to normoxia. We hypothesize that hypoxia-induced ET-1 and miR-21 remain elevated, whereas hypoxia-reduction in H2S sustains after returning to normoxic conditions. To test this hypothesis, we exposed male rats to 6 h of 12% O2 and measured circulating levels of ET-1 and miR-21, pre, during, and posthypoxia. We found that ET-1 plasma levels increased in response to hypoxia but returned to normal levels within 30 min after the restoration of normoxia. miR-21 plasma levels and transdermal H2S emissions decreased in response to hypoxia, remaining decreased on return to normoxia, thus following the biomarker criteria. Therefore, this study supports a unique role for plasma miR21 and transdermal H2S as hypoxia biomarkers that could be used to identify individuals after exposure to hypoxia.
Assuntos
Sulfeto de Hidrogênio , MicroRNAs , Masculino , Ratos , Animais , Hipóxia , Oxigênio , Endotelina-1 , Biomarcadores , MicroRNAs/genéticaRESUMO
In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine γ-lyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor dl-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 ± 4 to 131 ± 6; IH (n = 8): 131 ± 8 to 115 ± 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 ± 0.07; IH: 0.85 ± 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 µm). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation.NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.
Assuntos
Circulação Sanguínea , Pressão Sanguínea , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Síndromes da Apneia do Sono/metabolismo , Alcinos/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Corpo Carotídeo/fisiopatologia , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Inibidores Enzimáticos/farmacologia , Gasotransmissores/sangue , Glicina/análogos & derivados , Glicina/farmacologia , Hexametônio/farmacologia , Sulfeto de Hidrogênio/sangue , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Ratos , Ratos Sprague-Dawley , Síndromes da Apneia do Sono/fisiopatologia , Resistência VascularRESUMO
Pulmonary vasoconstriction resulting from intermittent hypoxia (IH) contributes to pulmonary hypertension (pHTN) in patients with sleep apnea (SA), although the mechanisms involved remain poorly understood. Based on prior studies in patients with SA and animal models of SA, the objective of this study was to evaluate the role of PKCß and mitochondrial reactive oxygen species (mitoROS) in mediating enhanced pulmonary vasoconstrictor reactivity after IH. We hypothesized that PKCß mediates vasoconstriction through interaction with the scaffolding protein PICK1 (protein interacting with C kinase 1), activation of mitochondrial ATP-sensitive potassium channels (mitoKATP), and stimulated production of mitoROS. We further hypothesized that this signaling axis mediates enhanced vasoconstriction and pHTN after IH. Rats were exposed to IH or sham conditions (7 h/d, 4 wk). Chronic oral administration of the antioxidant Tempol or the PKCß inhibitor LY-333531 abolished IH-induced increases in right ventricular systolic pressure and right ventricular hypertrophy. Furthermore, scavengers of O2- or mitoROS prevented enhanced PKCß-dependent vasoconstrictor reactivity to endothelin-1 in pulmonary arteries from IH rats. In addition, this PKCß/mitoROS signaling pathway could be stimulated by the PKC activator PMA in pulmonary arteries from control rats, and in both rat and human pulmonary arterial smooth muscle cells. These responses to PMA were attenuated by inhibition of mitoKATP or PICK1. Subcellular fractionation and proximity ligation assays further demonstrated that PKCß acutely translocates to mitochondria upon stimulation and associates with PICK1. We conclude that a PKCß/mitoROS signaling axis contributes to enhanced vasoconstriction and pHTN after IH. Furthermore, PKCß mediates pulmonary vasoconstriction through interaction with PICK1, activation of mitoKATP, and subsequent mitoROS generation.
Assuntos
Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Mitocôndrias/fisiologia , Proteína Quinase C beta/fisiologia , Artéria Pulmonar/fisiopatologia , Vasoconstrição/fisiologia , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Células Cultivadas , Óxidos N-Cíclicos/farmacologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Sequestradores de Radicais Livres/farmacologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Hipóxia/enzimologia , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Canais de Potássio/metabolismo , Mapeamento de Interação de Proteínas , Artéria Pulmonar/enzimologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Síndromes da Apneia do Sono/fisiopatologia , Marcadores de Spin , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.
Assuntos
Colágeno Tipo V/metabolismo , Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Núcleo Celular/metabolismo , Imunidade Celular/fisiologia , Transplante de Pulmão/métodosRESUMO
Obstructive sleep apnea is characterized by recurrent episodes of pharyngeal collapse during sleep, resulting in intermittent hypoxia (IH), and is associated with a high incidence of hypertension and accelerated renal failure. In rodents, endothelin (ET)-1 contributes to IH-induced hypertension, and ET-1 levels inversely correlate with glomerular filtration rate in patients with end-stage chronic kidney disease (CKD). Therefore, we hypothesized that a dual ET receptor antagonist, macitentan (Actelion Pharmaceuticals), will attenuate and reverse hypertension and renal dysfunction in a rat model of combined IH and CKD. Male Sprague-Dawley rats received one of three diets (control, 0.2% adenine, and 0.2% adenine + 30 mg·kg-1·day-1 macitentan) for 2 wk followed by 2 wk of recovery diet. Rats were then exposed for 4 wk to air or IH (20 short exposures/h to 5% O2-5% CO2 7 h/day during sleep). Macitentan prevented the increases in mean arterial blood pressure caused by CKD, IH, and the combination of CKD + IH. However, macitentan did not improve kidney function, fibrosis, and inflammation. After CKD was established, rats were exposed to air or IH for 2 wk, and macitentan feeding continued for 2 more wk. Macitentan reversed the hypertension in IH, CKD, and CKD + IH groups without improving renal function. Our data suggest that macitentan could be an effective antihypertensive in patients with CKD and irreversible kidney damage as a way to protect the heart, brain, and eyes from elevated arterial pressure, but it does not reverse toxin-induced tubule atrophy.
Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Hipertensão/prevenção & controle , Rim/efeitos dos fármacos , Pirimidinas/farmacologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Modelos Animais de Doenças , Endotelina-1/genética , Endotelina-1/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Masculino , Ratos Sprague-Dawley , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Síndromes da Apneia do Sono/fisiopatologiaRESUMO
Hydrogen sulfide (H2S) dilates isolated arteries, and knockout of the H2S-synthesizing enzyme cystathionine γ-lyase (CSE) increases blood pressure. However, the contributions of endogenously produced H2S to blood flow regulation in specific vascular beds are unknown. Published studies in isolated arteries show that CSE production of H2S influences vascular tone more in small mesenteric arteries than in renal arteries or the aorta. Therefore, the goal of this study was to evaluate H2S regulation of blood pressure, vascular resistance, and regional blood flows using chronically instrumented rats. We hypothesized that during whole animal CSE inhibition, vascular resistance would increase more in the mesenteric than the renal circulation. Under anesthesia, CSE inhibition [ß-cyanoalanine (BCA), 30 mg/kg bolus + 5 mg·kg-1·min-1 for 20 min iv) rapidly increased mean arterial pressure (MAP) more than saline administration (%Δ: saline -1.4 ± 0.75 vs. BCA 7.1 ± 1.69, P < 0.05) but did not change resistance (MAP/flow) in either the mesenteric or renal circulation. In conscious rats, BCA infusion similarly increased MAP (%Δ: saline -0.8 ± 1.18 vs. BCA 8.2 ± 2.6, P < 0.05, n = 7) and significantly increased mesenteric resistance (saline 0.9 ± 3.1 vs. BCA 15.6 ± 6.5, P < 0.05, n = 12). The H2S donor Na2S (50 mg/kg) decreased blood pressure and mesenteric resistance ,but the fall in resistance was not significant. Inhibiting CSE for multiple days with dl-proparglycine (PAG, 50 mg·kg-1·min-1 iv bolus for 5 days) significantly increased vascular resistance in both mesenteric (ratio of day 1: saline 0.86 ± 0.033 vs. PAG 1.79 ± 0.38) and renal circulations (ratio of day 1: saline 1.26 ± 0.22 vs. 1.98 ± 0.14 PAG). These results support our hypothesis that CSE-derived H2S is an important regulator of blood pressure and vascular resistance in both mesenteric and renal circulations. Furthermore, inhalation anesthesia diminishes the effect of CSE inhibition on vascular tone.NEW & NOTEWORTHY These results suggest that CSE-derived H2S has a prominent role in regulating blood pressure and blood flow under physiological conditions, which may have been underestimated in prior studies in anesthetized subjects. Therefore, enhancing substrate availability or enzyme activity or dosing with H2S donors could be a novel therapeutic approach to treat cardiovascular diseases.
Assuntos
Sulfeto de Hidrogênio/metabolismo , Artérias Mesentéricas/metabolismo , Artéria Renal/metabolismo , Circulação Renal , Circulação Esplâncnica , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Renal/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Circulação Esplâncnica/efeitos dos fármacos , Sulfetos/farmacologia , Resistência VascularRESUMO
Kidney injury and sleep apnea (SA) are independent risk factors for hypertension. Exposing rats to intermittent hypoxia (IH) to simulate SA increases blood pressure whereas adenine feeding causes persistent kidney damage to model chronic kidney disease (CKD). We hypothesized that exposing CKD rats to IH would exacerbate the development of hypertension and renal failure. Male Sprague-Dawley rats were fed a 0.2% adenine diet or control diet (Control) until blood urea nitrogen was >120 mg/dl in adenine-fed rats (14 ± 4 days, mean ± SE). After 2 wk of recovery on normal chow, rats were exposed to IH (20 exposures/h of 5% O2-5% CO2 7 h/day) or control conditions (Air) for 6 wk. Mean arterial pressure (MAP) was monitored with telemeters, and plasma and urine samples were collected weekly to calculate creatinine clearance as an index of glomerular filtration rate (GFR). Prior to IH, adenine-fed rats had higher blood pressure than rats on control diet. IH treatment increased MAP in both groups, and after 6 wk, MAP levels in the CKD/IH rats were greater than those in the CKD/Air and Control/IH rats. MAP levels in the Control/Air rats were lower than those in the other three groups. Kidney histology revealed crystalline deposits, tubule dilation, and interstitial fibrosis in both CKD groups. IH caused no additional kidney damage. Plasma creatinine was similarly increased in both CKD groups throughout whereas IH alone increased plasma creatinine. IH increases blood pressure further in CKD rats without augmenting declines in GFR but appears to impair GFR in healthy rats. We speculate that treating SA might decrease hypertension development in CKD patients and protect renal function in SA patients.
Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Hipóxia/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Pressão Arterial/fisiologia , Doenças Cardiovasculares/fisiopatologia , Rim/fisiopatologia , Testes de Função Renal , Masculino , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicaçõesRESUMO
Chronic hypoxia (CH) augments basal and endothelin-1 (ET-1)-induced pulmonary vasoconstrictor reactivity through reactive oxygen species (ROS) generation and RhoA/Rho kinase (ROCK)-dependent myofilament Ca2+ sensitization. Because ROCK promotes actin polymerization and the actin cytoskeleton regulates smooth muscle tension, we hypothesized that actin polymerization is required for enhanced basal and ET-1-dependent vasoconstriction after CH. To test this hypothesis, both end points were monitored in pressurized, endothelium-disrupted pulmonary arteries (fourth-fifth order) from control and CH (4 wk at 0.5 atm) rats. The actin polymerization inhibitors cytochalasin and latrunculin attenuated both basal and ET-1-induced vasoconstriction only in CH vessels. To test whether CH directly alters the arterial actin profile, we measured filamentous actin (F-actin)-to-globular actin (G-actin) ratios by fluorescent labeling of F-actin and G-actin in fixed pulmonary arteries and actin sedimentation assays using homogenized pulmonary artery lysates. We observed no difference in actin polymerization between groups under baseline conditions, but ET-1 enhanced actin polymerization in pulmonary arteries from CH rats. This response was blunted by the ROS scavenger tiron, the ROCK inhibitor fasudil, and the mDia (RhoA effector) inhibitor small-molecule inhibitor of formin homology domain 2. Immunoblot analysis revealed an effect of CH to increase both phosphorylated (inactive) and total levels of the actin disassembly factor cofilin but not phosphorylated cofilin-to-total cofilin ratios. We conclude that actin polymerization contributes to increased basal pulmonary arterial constriction and ET-1-induced vasoconstrictor reactivity after CH in a ROS- and ROCK-dependent manner. Our results further suggest that enhanced ET-1-mediated actin polymerization after CH is dependent on mDia but independent of changes in the phosphorylated cofilin-to-total cofilin ratio. NEW & NOTEWORTHY This research is the first to demonstrate a role for actin polymerization in chronic hypoxia-induced basal pulmonary arterial constriction and enhanced agonist-induced vasoconstrictor activity. These results suggest that a reactive oxygen species-Rho kinase-actin polymerization signaling pathway mediates this response and may provide a mechanistic basis for the vasoconstrictor component of pulmonary hypertension.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Artéria Pulmonar/metabolismo , Remodelação Vascular , Vasoconstrição , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/patologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Endotelina-1/farmacologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Estresse Oxidativo , Fosforilação , Polimerização , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismoRESUMO
Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4+ T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4+ T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1-/-, lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4+, CD8+, or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1-/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4+ but not CD8+ T cells restored the hypertensive phenotype in RAG1-/- mice. Interestingly, RAG1-/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4+ cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension.
Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/imunologia , Hipóxia/complicações , Hipóxia/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Pressão Sanguínea/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Doença Crônica , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Hipertensão Pulmonar/fisiopatologia , Interleucina-17/farmacologia , Interleucina-6/metabolismo , Pulmão/metabolismo , Depleção Linfocítica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sístole/efeitos dos fármacos , Sístole/fisiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th17/efeitos dos fármacosRESUMO
Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O2-5% CO2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H2S)-induced vasodilation in rats. The enzyme that produces H2S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca2+ concentration ([Ca2+]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca2+] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P < 0.05), and fewer EC were NFATc3 nuclear positive in IH rat arteries than in sham rat arteries (IH = 13 ± 3, sham = 59 ± 11%, P < 0.05). H2S production was also lower in mesenteric tissue from IH rats vs. sham rats. Endothelium-dependent vasodilation to acetylcholine (ACh) was lower in mesenteric arteries from IH rats than in arteries from sham rats, and inhibiting CSE with ß-cyanoalanine diminished ACh-induced vasodilation in arteries from sham but not IH rats but did not affect dilation to the H2S donor NaHS. Thus, IH lowers EC [Ca2+], NFAT activity, CSE expression and activity, and H2S production while inhibiting NFAT activation lowers CSE expression. The observations that IH exposure decreases NFATc3 activation and CSE-dependent vasodilation support a role for NFAT in regulating endothelial H2S production.NEW & NOTEWORTHY This study identifies the calcium-regulated transcription factor nuclear factor of activated T cells as a novel regulator of cystathionine γ-lyase (CSE). This pathway is basally active in mesenteric artery endothelial cells, but, after exposure to intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation.
Assuntos
Cistationina gama-Liase/biossíntese , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Fatores de Transcrição NFATC/metabolismo , Acetilcolina/farmacologia , Animais , Sequência de Bases , Calcineurina/metabolismo , Cálcio/metabolismo , Células Cultivadas , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/metabolismo , Hipóxia/enzimologia , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Ratos , Ratos Sprague-Dawley , Síndromes da Apneia do Sono/genética , Síndromes da Apneia do Sono/fisiopatologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
Normally, the pulmonary circulation is maintained in a low-pressure, low-resistance state with little resting tone. Pulmonary arteries are thin-walled and rely heavily on pulmonary arterial distension and recruitment for reducing pulmonary vascular resistance when cardiac output is elevated. Under pathophysiological conditions, however, active vasoconstriction and vascular remodeling lead to enhanced pulmonary vascular resistance and subsequent pulmonary hypertension (PH). Chronic hypoxia is a critical pathological factor associated with the development of PH resulting from airway obstruction (COPD, sleep apnea), diffusion impairment (interstitial lung disease), developmental lung abnormalities, or high altitude exposure (World Health Organization [WHO]; Group III). The rise in pulmonary vascular resistance increases right heart afterload causing right ventricular hypertrophy that can ultimately lead to right heart failure in patients with chronic lung disease. PH is typically characterized by diminished paracrine release of vasodilators, antimitogenic factors, and antithrombotic factors (e.g., nitric oxide and protacyclin) and enhanced production of vasoconstrictors and mitogenic factors (e.g., reactive oxygen species and endothelin-1) from the endothelium and lung parenchyma. In addition, phenotypic changes to pulmonary arterial smooth muscle cells (PASMC), including alterations in Ca2+ homeostasis, Ca2+ sensitivity, and activation of transcription factors are thought to play prominent roles in the development of both vasoconstrictor and arterial remodeling components of hypoxia-associated PH. These changes in PASMC function are briefly reviewed in Sect. 1 and the influence of altered reactive oxygen species homeostasis on PASMC function discussed in Sects. 2-4.
Assuntos
Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Oxirredução , Artéria Pulmonar/fisiopatologia , Remodelação Vascular , Resistência Vascular , VasoconstriçãoRESUMO
Acid-sensing ion channel 1 (ASIC1) contributes to Ca(2+) influx and contraction in pulmonary arterial smooth muscle cells (PASMC). ASIC1 binds the PDZ (PSD-95/Dlg/ZO-1) domain of the protein interacting with C kinase 1 (PICK1), and this interaction is important for the subcellular localization and/or activity of ASIC1. Therefore, we first hypothesized that PICK1 facilitates ASIC1-dependent Ca(2+) influx in PASMC by promoting plasma membrane localization. Using Duolink to determine protein-protein interactions and a biotinylation assay to assess membrane localization, we demonstrated that the PICK1 PDZ domain inhibitor FSC231 diminished the colocalization of PICK1 and ASIC1 but did not limit ASIC1 plasma membrane localization. Although stimulation of store-operated Ca(2+) entry (SOCE) greatly enhanced colocalization between ASIC1 and PICK1, both FSC231 and shRNA knockdown of PICK1 largely augmented SOCE. These data suggest PICK1 imparts a basal inhibitory effect on ASIC1 Ca(2+) entry in PASMC and led to an alternative hypothesis that PICK1 facilitates the interaction between ASIC1 and negative intracellular modulators, namely PKC and/or the calcium-calmodulin-activated phosphatase calcineurin. FSC231 limited PKC-mediated inhibition of SOCE, supporting a potential role for PICK1 in this response. Additionally, we found PICK1 inhibits ASIC1-mediated SOCE through an effect of calcineurin to dephosphorylate the channel. Furthermore, it appears PICK1/calcineurin-mediated regulation of SOCE opposes PKA phosphorylation and activation of ASIC1. Together our data suggest PKA and PICK1/calcineurin differentially regulate ASIC1-mediated SOCE and these modulatory complexes are important in determining downstream Ca(2+) signaling.
Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Proteínas do Citoesqueleto , Hipóxia/metabolismo , Masculino , Artéria Pulmonar/metabolismo , Ratos WistarRESUMO
The development of chronic hypoxia (CH)-induced pulmonary hypertension is associated with increased pulmonary arterial smooth muscle cell (PASMC) Ca(2+) influx through acid-sensing ion channel-1 (ASIC1) and activation of the Ca(2+)/calcineurin-dependent transcription factor known as nuclear factor of activated T-cells isoform c3 (NFATc3). Whether Ca(2+) influx through ASIC1 contributes to NFATc3 activation in the pulmonary vasculature is unknown. Furthermore, both ASIC1 and calcineurin have been shown to interact with the scaffolding protein known as protein interacting with C kinase-1 (PICK1). In the present study, we tested the hypothesis that ASIC1 contributes to NFATc3 nuclear translocation in PASMC in a PICK1-dependent manner. Using both ASIC1 knockout (ASIC1(-/-)) mice and pharmacological inhibition of ASIC1, we demonstrate that ASIC1 contributes to CH-induced (1 wk at 380 mmHg) and endothelin-1 (ET-1)-induced (10(-7) M) Ca(2+) responses and NFATc3 nuclear import in PASMC. The interaction between ASIC1/PICK1/calcineurin was shown using a Duolink in situ Proximity Ligation Assay. Inhibition of PICK1 by using FSC231 abolished ET-1-induced and ionomycin-induced NFATc3 nuclear import, but it did not alter ET-1-mediated Ca(2+) responses, suggesting that PICK1 acts downstream of Ca(2+) influx. The key findings of the present work are that 1) Ca(2+) influx through ASIC1 mediates CH- and ET-1-induced NFATc3 nuclear import and 2) the scaffolding protein PICK1 is necessary for NFATc3 nuclear import. Together, these data provide an essential link between CH-induced ASIC1-mediated Ca(2+) influx and activation of the NFATc3 transcription factor. Identification of this ASIC1/PICK1/NFATc3 signaling complex increases our understanding of the mechanisms contributing to the vascular remodeling and increased vascular contractility that are associated with CH-induced pulmonary hypertension.
Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Proteínas de Transporte/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sinalização do Cálcio , Proteínas de Ciclo Celular , Hipóxia Celular , Células Cultivadas , Endotelina-1/fisiologia , Feminino , Hipertensão Pulmonar/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Artéria Pulmonar/patologiaRESUMO
Ca(+) sparks are vascular smooth muscle cell (VSMC) Ca(2+)-release events that are mediated by ryanodine receptors (RyR) and promote vasodilation by activating large-conductance Ca(2+)-activated potassium channels and inhibiting myogenic tone. We have previously reported that exposing rats to intermittent hypoxia (IH) to simulate sleep apnea augments myogenic tone in mesenteric arteries through loss of hydrogen sulfide (H2S)-induced dilation. Because we also observed that H2S can increase Ca(2+) spark activity, we hypothesized that loss of H2S after IH exposure reduces Ca(2+) spark activity and that blocking Ca(2+) spark generation reduces H2S-induced dilation. Ca(2+) spark activity was lower in VSMC of arteries from IH compared with sham-exposed rats. Furthermore, depolarizing VSMC by increasing luminal pressure (from 20 to 100 mmHg) or by elevating extracellular [K(+)] increased spark activity in VSMC of arteries from sham rats but had no effect in arteries from IH rats. Inhibiting endogenous H2S production in sham arteries prevented these increases. NaHS or phosphodiesterase inhibition increased spark activity to the same extent in sham and IH arteries. Depolarization-induced increases in Ca(2+) spark activity were due to increased sparks per site, whereas H2S increases in spark activity were due to increased spark sites per cell. Finally, inhibiting Ca(2+) spark activity with ryanodine (10 µM) enhanced myogenic tone in arteries from sham but not IH rats and blocked dilation to exogenous H2S in arteries from both sham and IH rats. Our results suggest that H2S regulates RyR activation and that H2S-induced dilation requires Ca(2+) spark activation. IH exposure decreases endogenous H2S-dependent Ca(2+) spark activation to cause membrane depolarization and enhance myogenic tone in mesenteric arteries.
Assuntos
Sinalização do Cálcio , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Vasodilatação , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Sulfeto de Hidrogênio/metabolismo , Hipóxia/fisiopatologia , Técnicas In Vitro , Masculino , Potenciais da Membrana , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Inibidores de Fosfodiesterase/farmacologia , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
We recently demonstrated increased superoxide (O2(·-)) and decreased H2O2 levels in pulmonary arteries of chronic hypoxia-exposed wild-type and normoxic superoxide dismutase 1 (SOD1) knockout mice. We also showed that this reciprocal change in O2(·-) and H2O2 is associated with elevated activity of nuclear factor of activated T cells isoform c3 (NFATc3) in pulmonary arterial smooth muscle cells (PASMC). This suggests that an imbalance in reactive oxygen species levels is required for NFATc3 activation. However, how such imbalance activates NFATc3 is unknown. This study evaluated the importance of O2(·-) and H2O2 in the regulation of NFATc3 activity. We tested the hypothesis that an increase in O2(·-) enhances actin cytoskeleton dynamics and a decrease in H2O2 enhances intracellular Ca(2+) concentration, contributing to NFATc3 nuclear import and activation in PASMC. We demonstrate that, in PASMC, endothelin-1 increases O2(·-) while decreasing H2O2 production through the decrease in SOD1 activity without affecting SOD protein levels. We further demonstrate that O2(·-) promotes, while H2O2 inhibits, NFATc3 activation in PASMC. Additionally, increased O2(·-)-to-H2O2 ratio activates NFATc3, even in the absence of a Gq protein-coupled receptor agonist. Furthermore, O2(·-)-dependent actin polymerization and low intracellular H2O2 concentration-dependent increases in intracellular Ca(2+) concentration contribute to NFATc3 activation. Together, these studies define important and novel regulatory mechanisms of NFATc3 activation in PASMC by reactive oxygen species.
Assuntos
Peróxido de Hidrogênio/metabolismo , Músculo Liso Vascular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Artéria Pulmonar/metabolismo , Superóxido Dismutase/biossíntese , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Knockout , Superóxido Dismutase-1RESUMO
Our laboratory shows that acid-sensing ion channel 1 (ASIC1) contributes to the development of hypoxic pulmonary hypertension by augmenting store-operated Ca(2+) entry (SOCE) that is associated with enhanced agonist-induced vasoconstriction and arterial remodeling. However, this enhanced Ca(2+) influx following chronic hypoxia (CH) is not dependent on an increased ASIC1 protein expression in pulmonary arterial smooth muscle cells (PASMC). It is well documented that hypoxic pulmonary hypertension is associated with changes in redox potential and reactive oxygen species homeostasis. ASIC1 is a redox-sensitive channel showing increased activity in response to reducing agents, representing an alternative mechanism of regulation. We hypothesize that the enhanced SOCE following CH results from removal of an inhibitory effect of hydrogen peroxide (H2O2) on ASIC1. We found that CH increased PASMC superoxide (O2 (·-)) and decreased rat pulmonary arterial H2O2 levels. This decrease in H2O2 is a result of decreased Cu/Zn superoxide dismutase expression and activity, as well as increased glutathione peroxidase (GPx) expression and activity following CH. Whereas H2O2 inhibited ASIC1-dependent SOCE in PASMC from control and CH animals, addition of catalase augmented ASIC1-mediated SOCE in PASMC from control rats but had no further effect in PASMC from CH rats. These data suggest that, under control conditions, H2O2 inhibits ASIC1-dependent SOCE. Furthermore, H2O2 levels are decreased following CH as a result of diminished dismutation of O2 (·-) and increased H2O2 catalysis through GPx-1, leading to augmented ASIC1-dependent SOCE.
Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/farmacologia , Hipóxia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo , Animais , Western Blotting , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Oxidantes/farmacologia , Artéria Pulmonar/citologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/fisiologia , Superóxido Dismutase-1RESUMO
Sleep apnea is associated with cardiovascular disease, and patients with sleep apnea have elevated plasma endothelin (ET)-1 concentrations. Rats exposed to intermittent hypoxia (IH), a model of sleep apnea, also have increased plasma ET-1 concentrations and heightened constriction to ET-1 in mesenteric arteries without an increase in global vascular smooth muscle cell Ca(2+) concentration ([Ca(2+)]). Because ET-1 has been shown to increase the occurrence of propagating Ca(2+) waves, we hypothesized that ET-1 increases Ca(2+) wave activity in mesenteric arteries, rather than global [Ca(2+)], to mediate enhanced vasoconstriction after IH exposure. Male Sprague-Dawley rats were exposed to sham or IH conditions for 7 h/day for 2 wk. Mesenteric arteries from sham- and IH-exposed rats were isolated, cannulated, and pressurized to 75 mmHg to measure ET-1-induced constriction as well as changes in global [Ca(2+)] and Ca(2+) wave activity. A low concentration of ET-1 (1 nM) elicited similar vasoconstriction and global Ca(2+) responses in the two groups. Conversely, ET-1 had no effect on Ca(2+) wave activity in arteries from sham rats but significantly increased wave frequency in arteries from IH-exposed rats. The ET-1-induced increase in Ca(2+) wave frequency in arteries from IH rats was dependent on phospholipase C and inositol 1,4,5-trisphosphate receptor activation, yet inhibition of phospholipase C and the inositol 1,4,5-trisphosphate receptor did not prevent ET-1-mediated vasoconstriction. These results suggest that although ET-1 elevates Ca(2+) wave activity after IH exposure, increases in wave activity are not associated with increased vasoconstriction.
Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Endotelina-1/farmacologia , Hipóxia/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismoRESUMO
PURPOSE: Chronic, high-altitude hypoxic exposure increases the risk of high-altitude pulmonary hypertension (PH). Emerging evidence shows maternal exercise may improve offspring resistance to disease throughout life. The purpose of this study is to determine if maternal exercise mitigates chronic hypoxic-induced changes in the offspring indicative of high-altitude PH development. METHODS: Female adult C57BL/6J mice were randomly allocated to nonexercise or exercise conditions. Exercise consisted of voluntary running wheel exercise for 4 wk during the perinatal period. Three days after birth, the pups remained at low altitude (normoxia) or were exposed to hypobaric hypoxia of 450 mm Hg to simulate ~4500 m of altitude exposure until 8 wk of age. The study consisted of four groups: hypoxia + nonexercise pregnancy, hypoxia + exercise, or the respective normoxia conditions (normoxia + nonexercise or normoxia + exercise). Offspring body size, motor function, right ventricular systolic pressure (RVSP), and cardiopulmonary morphology were assessed after 8 wk in normoxia or hypoxia. RESULTS: Both hypoxic groups had smaller body sizes, reduced motor function, increased hematocrit, RVSP, muscularization in medium-sized pulmonary arteries, as well as right ventricular hypertrophy and contractility compared with the normoxic groups ( P < 0.05). CONCLUSIONS: Chronic hypoxia simulating 4500 m attenuated growth, lowered motor function, and elicited PH development. Voluntary maternal exercise did not significantly decrease RVSP in the offspring, which aligned with a lack of effect to attenuate abnormal body size and cardiopulmonary development due to chronic hypoxia. These findings are preliminary in nature, and more powered studies through larger group sizes are required to generalize the results to the population.
Assuntos
Hipertensão Pulmonar , Hipóxia , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Remodelação Vascular , Animais , Remodelação Vascular/fisiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/etiologia , Feminino , Condicionamento Físico Animal/fisiologia , Gravidez , Hipóxia/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal , Artéria Pulmonar/fisiopatologia , Camundongos , Doença da Altitude/fisiopatologia , MasculinoRESUMO
Elevated reactive oxygen species are implicated in pulmonary hypertension (PH). Superoxide dismutase (SOD) limits superoxide bioavailability, and decreased SOD activity is associated with PH. A decrease in SOD activity is expected to increase superoxide and reduce hydrogen peroxide levels. Such an imbalance of superoxide/hydrogen peroxide has been implicated as a mediator of nuclear factor of activated T cells (NFAT) activation in epidermal cells. We have shown that NFATc3 is required for chronic hypoxia-induced PH. However, it is unknown whether NFATc3 is activated in the pulmonary circulation in a mouse model of decreased SOD1 activity and whether this leads to PH. Therefore, we hypothesized that an elevated pulmonary arterial superoxide/hydrogen peroxide ratio activates NFATc3, leading to PH. We found that SOD1 knockout (KO) mice have elevated pulmonary arterial wall superoxide and decreased hydrogen peroxide levels compared with wild-type (WT) littermates. Right ventricular systolic pressure (RVSP) was elevated in SOD1 KO and was associated with pulmonary arterial remodeling. Vasoreactivity to endothelin-1 was also greater in SOD1 KO vs. WT mice. NFAT activity and NFATc3 nuclear localization were increased in pulmonary arteries from SOD1 KO vs. WT mice. Administration of A-285222 (selective NFAT inhibitor) decreased RVSP, arterial wall thickness, vasoreactivity, and NFAT activity in SOD1 KO mice to WT levels. The SOD mimetic, tempol, also reduced NFAT activity, NFATc3 nuclear localization, and RVSP to WT levels. These findings suggest that an elevated superoxide/hydrogen peroxide ratio activates NFAT in pulmonary arteries, which induces vascular remodeling and increases vascular reactivity leading to PH.