Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648484

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Assuntos
Aterosclerose , Células Endoteliais , Lamina Tipo A , Músculo Liso Vascular , Progéria , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética
2.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446344

RESUMO

Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Músculo Liso Vascular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Cardiomiopatia Dilatada/patologia , Mutação
3.
Circulation ; 144(22): 1777-1794, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34694158

RESUMO

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life. Assessing the reversibility of progerin-induced damage and the relative contribution of specific cell types is critical to determining the potential benefits of late treatment and to developing new therapies. METHODS: We used CRISPR-Cas9 technology to generate LmnaHGPSrev/HGPSrev (HGPSrev) mice engineered to ubiquitously express progerin while lacking lamin A and allowing progerin suppression and lamin A restoration in a time- and cell type-specific manner on Cre recombinase activation. We characterized the phenotype of HGPSrev mice and crossed them with Cre transgenic lines to assess the effects of suppressing progerin and restoring lamin A ubiquitously at different disease stages as well as specifically in vascular smooth muscle cells and cardiomyocytes. RESULTS: Like patients with HGPS, HGPSrev mice appear healthy at birth and progressively develop HGPS symptoms, including failure to thrive, lipodystrophy, vascular smooth muscle cell loss, vascular fibrosis, electrocardiographic anomalies, and precocious death (median lifespan of 15 months versus 26 months in wild-type controls, P<0.0001). Ubiquitous progerin suppression and lamin A restoration significantly extended lifespan when induced in 6-month-old mildly symptomatic mice and even in severely ill animals aged 13 months, although the benefit was much more pronounced on early intervention (84.5% lifespan extension in mildly symptomatic mice, P<0.0001, and 6.7% in severely ill mice, P<0.01). It is remarkable that major vascular alterations were prevented and lifespan normalized in HGPSrev mice when progerin suppression and lamin A restoration were restricted to vascular smooth muscle cells and cardiomyocytes. CONCLUSIONS: HGPSrev mice constitute a new experimental model for advancing knowledge of HGPS. Our findings suggest that it is never too late to treat HGPS, although benefit is much more pronounced when progerin is targeted in mice with mild symptoms. Despite the broad expression pattern of progerin and its deleterious effects in many organs, restricting its suppression to vascular smooth muscle cells and cardiomyocytes is sufficient to prevent vascular disease and normalize lifespan.


Assuntos
Lamina Tipo A/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Progéria , Animais , Modelos Animais de Doenças , Humanos , Lamina Tipo A/genética , Camundongos , Camundongos Transgênicos , Progéria/genética , Progéria/metabolismo
4.
Circulation ; 138(3): 266-282, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29490993

RESUMO

BACKGROUND: Progerin, an aberrant protein that accumulates with age, causes the rare genetic disease Hutchinson-Gilford progeria syndrome (HGPS). Patients who have HGPS exhibit ubiquitous progerin expression, accelerated aging and atherosclerosis, and die in their early teens, mainly of myocardial infarction or stroke. The mechanisms underlying progerin-induced atherosclerosis remain unexplored, in part, because of the lack of appropriate animal models. METHODS: We generated an atherosclerosis-prone model of HGPS by crossing apolipoprotein E-deficient (Apoe-/-) mice with LmnaG609G/G609G mice ubiquitously expressing progerin. To induce progerin expression specifically in macrophages or vascular smooth muscle cells (VSMCs), we crossed Apoe-/-LmnaLCS/LCS mice with LysMCre and SM22αCre mice, respectively. Progerin expression was evaluated by polymerase chain reaction and immunofluorescence. Cardiovascular alterations were determined by immunofluorescence and histology in male mice fed normal chow or a high-fat diet. In vivo low-density lipoprotein retention was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein. Cardiac electric defects were evaluated by electrocardiography. RESULTS: Apoe-/-LmnaG609G/G609G mice with ubiquitous progerin expression exhibited a premature aging phenotype that included failure to thrive and shortened survival. In addition, high-fat diet-fed Apoe-/-LmnaG609G/G609G mice developed a severe vascular pathology, including medial VSMC loss and lipid retention, adventitial fibrosis, and accelerated atherosclerosis, thus resembling most aspects of cardiovascular disease observed in patients with HGPS. The same vascular alterations were also observed in Apoe-/-LmnaLCS/LCSSM22αCre mice expressing progerin specifically in VSMCs, but not in Apoe-/-LmnaLCS/LCSLysMCre mice with macrophage-specific progerin expression. Moreover, Apoe-/-LmnaLCS/LCSSM22αCre mice had a shortened lifespan despite the lack of any overt aging phenotype. Aortas of ubiquitously and VSMC-specific progerin-expressing mice exhibited increased retention of fluorescently labeled human low-density lipoprotein, and atheromata in both models showed vulnerable plaque features. Immunohistopathological examination indicated that Apoe-/-LmnaLCS/LCSSM22αCre mice, unlike Apoe-/-LmnaG609G/G609G mice, die of atherosclerosis-related causes. CONCLUSIONS: We have generated the first mouse model of progerin-induced atherosclerosis acceleration, and demonstrate that restricting progerin expression to VSMCs is sufficient to accelerate atherosclerosis, trigger plaque vulnerability, and reduce lifespan. Our results identify progerin-induced VSMC death as a major factor triggering atherosclerosis and premature death in HGPS.


Assuntos
Aorta/patologia , Arteriosclerose/metabolismo , Lamina Tipo A/genética , Músculo Liso Vascular/metabolismo , Progéria/metabolismo , Animais , Arteriosclerose/genética , Senescência Celular , Modelos Animais de Doenças , Humanos , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Progéria/genética
5.
BMC Med ; 16(1): 28, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471877

RESUMO

BACKGROUND: Depression is viewed as a major and increasing public health issue, as it causes high distress in the people experiencing it and considerable financial costs to society. Efforts are being made to reduce this burden by preventing depression. A critical component of this strategy is the ability to assess the individual level and profile of risk for the development of major depression. This paper presents the cost-effectiveness of a personalized intervention based on the risk of developing depression carried out in primary care, compared with usual care. METHODS: Cost-effectiveness analyses are nested within a multicentre, clustered, randomized controlled trial of a personalized intervention to prevent depression. The study was carried out in 70 primary care centres from seven cities in Spain. Two general practitioners (GPs) were randomly sampled from those prepared to participate in each centre (i.e. 140 GPs), and 3326 participants consented and were eligible to participate. The intervention included the GP communicating to the patient his/her individual risk for depression and personal risk factors and the construction by both GPs and patients of a psychosocial programme tailored to prevent depression. In addition, GPs carried out measures to activate and empower the patients, who also received a leaflet about preventing depression. GPs were trained in a 10- to 15-h workshop. Costs were measured from a societal and National Health care perspective. Qualityadjustedlife years were assessed using the EuroQOL five dimensions questionnaire. The time horizon was 18 months. RESULTS: With a willingness-to-pay threshold of €10,000 (£8568) the probability of cost-effectiveness oscillated from 83% (societal perspective) to 89% (health perspective). If the threshold was increased to €30,000 (£25,704), the probability of being considered cost-effective was 94% (societal perspective) and 96%, respectively (health perspective). The sensitivity analysis confirmed these results. CONCLUSIONS: Compared with usual care, an intervention based on personal predictors of risk of depression implemented by GPs is a cost-effective strategy to prevent depression. This type of personalized intervention in primary care should be further developed and evaluated. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01151982. Registered on June 29, 2010.


Assuntos
Depressão/prevenção & controle , Atenção Primária à Saúde/economia , Atenção Primária à Saúde/métodos , Análise por Conglomerados , Análise Custo-Benefício , Depressão/economia , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Medição de Risco
6.
Ann Intern Med ; 164(10): 656-65, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27019334

RESUMO

BACKGROUND: Not enough is known about universal prevention of depression in adults. OBJECTIVE: To evaluate the effectiveness of an intervention to prevent major depression. DESIGN: Multicenter, cluster randomized trial with sites randomly assigned to usual care or an intervention. (ClinicalTrials.gov: NCT01151982). SETTING: 10 primary care centers in each of 7 cities in Spain. PARTICIPANTS: Two primary care physicians (PCPs) and 5236 nondepressed adult patients were randomly sampled from each center; 3326 patients consented and were eligible to participate. INTERVENTION: For each patient, PCPs communicated individual risk for depression and personal predictors of risk and developed a psychosocial program tailored to prevent depression. MEASUREMENTS: New cases of major depression, assessed every 6 months for 18 months. RESULTS: At 18 months, 7.39% of patients in the intervention group (95% CI, 5.85% to 8.95%) developed major depression compared with 9.40% in the control (usual care) group (CI, 7.89% to 10.92%) (absolute difference, -2.01 percentage points [CI, -4.18 to 0.16 percentage points]; P = 0.070). Depression incidence was lower in the intervention centers in 5 cities and similar between intervention and control centers in 2 cities. LIMITATION: Potential self-selection bias due to nonconsenting patients. CONCLUSION: Compared with usual care, an intervention based on personal predictors of risk for depression implemented by PCPs provided a modest but nonsignificant reduction in the incidence of major depression. Additional study of this approach may be warranted. PRIMARY FUNDING SOURCE: Institute of Health Carlos III.


Assuntos
Transtorno Depressivo Maior/prevenção & controle , Atenção Primária à Saúde/métodos , Transtorno Depressivo Maior/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Medição de Risco/métodos , Espanha/epidemiologia
7.
J Cell Sci ; 127(Pt 17): 3768-81, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24994937

RESUMO

Cell-cell adhesions are important sites through which cells experience and resist forces. In endothelial cells, these forces regulate junction dynamics and determine endothelial barrier strength. We identify the Ig superfamily member EMMPRIN (also known as basigin) as a coordinator of forces at endothelial junctions. EMMPRIN localization at junctions correlates with endothelial junction strength in different mouse vascular beds. Accordingly, EMMPRIN-deficient mice show altered junctions and increased junction permeability. Lack of EMMPRIN alters the localization and function of VE-cadherin (also known as cadherin-5) by decreasing both actomyosin contractility and tugging forces at endothelial cell junctions. EMMPRIN ensures proper actomyosin-driven maturation of competent endothelial junctions by forming a molecular complex with γ-catenin (also known as junction plakoglobin) and Nm23 (also known as NME1), a nucleoside diphosphate kinase, thereby locally providing ATP to fuel the actomyosin machinery. These results provide a novel mechanism for the regulation of actomyosin contractility at endothelial junctions and might have broader implications in biological contexts such as angiogenesis, collective migration and tissue morphogenesis by coupling compartmentalized energy production to junction assembly.


Assuntos
Actomiosina/metabolismo , Trifosfato de Adenosina/biossíntese , Basigina/metabolismo , Células Endoteliais/citologia , Nucleosídeo NM23 Difosfato Quinases/metabolismo , gama Catenina/metabolismo , Animais , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/biossíntese , Endotélio Vascular/metabolismo , Junções Intercelulares/metabolismo , Camundongos
8.
Int J Phytoremediation ; 18(6): 567-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26375321

RESUMO

The objective of this work is to study the response of Silene vulgaris to a range of environmentally relevant concentrations of Cr(VI) in order to evaluate its potential use in the phytomanagement of Cr polluted sites. Cuttings of six homogenous genotypes from Madrid (Spain) have been used as plant material. The eco-physiological response of S. vulgaris to Cr(VI) changed with the genotype. The yield dose-response curve was characterized by stimulation at low doses of Cr(VI). The effects of metal concentration were quantified on root dry weight, water content and chlorophyll content, determined by SPAD index. The response was not homogeneous for all studied genotypes. At high doses of Cr(VI), plants increased micronutrient concentration in dry tissues which suggested that nutrient balance could be implicated in the alleviation of Cr toxicity. This work highlights the importance of studying the eco-physiological response of metallophytes under a range of pollutant concentrations to determine the most favorable traits to be employed in the phytomanagement process.


Assuntos
Caryophyllaceae/metabolismo , Cromo/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Caryophyllaceae/química , Caryophyllaceae/classificação , Caryophyllaceae/genética , Clorofila/análise , Clorofila/metabolismo , Cromo/análise , Genótipo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
9.
Geroscience ; 46(1): 867-884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37233881

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.


Assuntos
Progéria , Humanos , Camundongos , Animais , Progéria/genética , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Hipóxia
10.
FASEB J ; 26(11): 4481-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859368

RESUMO

The mechanism by which proteolytic events translate into biological responses is not well understood. To explore the link of pericellular proteolysis to events relevant to capillary sprouting within the inflammatory context, we aimed at the identification of the collection of substrates of the protease MT1-MMP in endothelial tip cells induced by inflammatory stimuli. We applied quantitative proteomics to endothelial cells (ECs) derived from wild-type and MT1-MMP-null mice to identify the substrate repertoire of this protease in TNF-α-activated ECs. Bioinformatics analysis revealed a combinatorial MT1-MMP proteolytic program, in which combined rather than single substrate processing would determine biological decisions by activated ECs, including chemotaxis, cell motility and adhesion, and vasculature development. MT1-MMP-deficient ECs inefficiently processed several of these substrates (TSP1, CYR61, NID1, and SEM3C), validating the model. This novel concept of MT1-MMP-driven combinatorial proteolysis in angiogenesis might be extendable to proteolytic actions in other cellular contexts.


Assuntos
Células Endoteliais/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Animais , Western Blotting , Técnicas de Química Combinatória , Biologia Computacional , Regulação Enzimológica da Expressão Gênica/fisiologia , Inflamação , Metaloproteinase 14 da Matriz/genética , Camundongos , Análise Serial de Proteínas , Interferência de RNA , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Fator de Necrose Tumoral alfa
11.
BMC Psychiatry ; 13: 171, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23782553

RESUMO

BACKGROUND: The 'predictD algorithm' provides an estimate of the level and profile of risk of the onset of major depression in primary care attendees. This gives us the opportunity to develop interventions to prevent depression in a personalized way. We aim to evaluate the effectiveness, cost-effectiveness and cost-utility of a new intervention, personalized and implemented by family physicians (FPs), to prevent the onset of episodes of major depression. METHODS/DESIGN: This is a multicenter randomized controlled trial (RCT), with cluster assignment by health center and two parallel arms. Two interventions will be applied by FPs, usual care versus the new intervention predictD-CCRT. The latter has four components: a training workshop for FPs; communicating the level and profile of risk of depression; building up a tailored bio-psycho-family-social intervention by FPs to prevent depression; offering a booklet to prevent depression; and activating and empowering patients. We will recruit a systematic random sample of 3286 non-depressed adult patients (1643 in each trial arm), nested in 140 FPs and 70 health centers from 7 Spanish cities. All patients will be evaluated at baseline, 6, 12 and 18 months. The level and profile of risk of depression will be communicated to patients by the FPs in the intervention practices at baseline, 6 and 12 months. Our primary outcome will be the cumulative incidence of major depression (measured by CIDI each 6 months) over 18 months of follow-up. Secondary outcomes will be health-related quality of life (SF-12 and EuroQol), and measurements of cost-effectiveness and cost-utility. The inferences will be made at patient level. We shall undertake an intention-to-treat effectiveness analysis and will handle missing data using multiple imputations. We will perform multi-level logistic regressions and will adjust for the probability of the onset of major depression at 12 months measured at baseline as well as for unbalanced variables if appropriate. The economic evaluation will be approached from two perspectives, societal and health system. DISCUSSION: To our knowledge, this will be the first RCT of universal primary prevention for depression in adults and the first to test a personalized intervention implemented by FPs. We discuss possible biases as well as other limitations. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01151982.


Assuntos
Transtorno Depressivo Maior/prevenção & controle , Atenção Primária à Saúde/métodos , Qualidade de Vida , Adulto , Protocolos Clínicos , Análise Custo-Benefício , Transtorno Depressivo Maior/economia , Humanos , Atenção Primária à Saúde/economia , Projetos de Pesquisa , Risco , Espanha
12.
Proc Natl Acad Sci U S A ; 107(23): 10626-31, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498053

RESUMO

The retinoid X receptor alpha (RXRalpha) plays a central role in the regulation of many intracellular receptor signaling pathways and can mediate ligand-dependent transcription by forming homodimers or heterodimers with other nuclear receptors. Although several members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression, the existence in vivo of an RXR signaling pathway in macrophages has not been established. Here, we provide evidence that RXRalpha regulates the transcription of the chemokines Ccl6 and Ccl9 in macrophages independently of heterodimeric partners. Mice lacking RXRalpha in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis. These studies demonstrate that macrophage RXRalpha plays key roles in the regulation of innate immunity and represents a potential target for immunotherapy of sepsis.


Assuntos
Quimiocinas CC/imunologia , Imunidade Inata , Proteínas Inflamatórias de Macrófagos/imunologia , Receptor X Retinoide alfa/imunologia , Sepse/imunologia , Regulação para Cima , Animais , Sequência de Bases , Células Cultivadas , Quimiocinas CC/genética , Proteínas Inflamatórias de Macrófagos/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Receptor X Retinoide alfa/deficiência , Sepse/genética , Sepse/metabolismo , Sepse/terapia , Transcrição Gênica
13.
Cardiovasc Res ; 118(2): 503-516, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33624748

RESUMO

AIMS: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS: We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS: Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Citoesqueleto/efeitos dos fármacos , Acoplamento Excitação-Contração/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Paclitaxel/farmacologia , Progéria/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Camundongos Mutantes , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Progéria/genética , Progéria/metabolismo , Progéria/fisiopatologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Suínos , Porco Miniatura , Tubulina (Proteína)/metabolismo
14.
ACS Cent Sci ; 7(8): 1300-1310, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34471675

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the Lmna G609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria.

15.
Blood ; 112(8): 3217-26, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18663148

RESUMO

MT1-MMP plays a key role in endothelial function, as underscored by the angiogenic defects found in MT1-MMP deficient mice. We have studied the molecular interactions that underlie the functional regulation of MT1-MMP. At lateral endothelial cell junctions, MT1-MMP colocalizes with tetraspanin CD151 (Tspan 24) and its associated partner alpha3beta1 integrin. Biochemical and FRET analyses show that MT1-MMP, through its hemopexin domain, associates tightly with CD151, thus forming alpha3beta1 integrin/CD151/MT1-MMP ternary complexes. siRNA knockdown of HUVEC CD151 expression enhanced MT1-MMP-mediated activation of MMP2, and the same activation was seen in ex vivo lung endothelial cells isolated from CD151-deficient mice. However, analysis of collagen degradation in these experimental models revealed a diminished MT1-MMP enzymatic activity in confined areas around the cell periphery. CD151 knockdown affected both MT1-MMP subcellular localization and its inclusion into detergent-resistant membrane domains, and prevented biochemical association of the metalloproteinase with the integrin alpha3beta1. These data provide evidence for a novel regulatory role of tetraspanin microdomains on the collagenolytic activity of MT1-MMP and indicate that CD151 is a key regulator of MT1-MMP in endothelial homeostasis.


Assuntos
Antígenos CD/química , Células Endoteliais/citologia , Regulação da Expressão Gênica , Metaloproteinase 14 da Matriz/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Homeostase , Humanos , Integrina alfa3beta1/metabolismo , Pulmão/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Tetraspanina 24
16.
Cells ; 9(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049978

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is among the most devastating of the laminopathies, rare genetic diseases caused by mutations in genes encoding nuclear lamina proteins. HGPS patients age prematurely and die in adolescence, typically of atherosclerosis-associated complications. The mechanisms of HGPS-related atherosclerosis are not fully understood due to the scarcity of patient-derived samples and the availability of only one atheroprone mouse model of the disease. Here, we generated a new atherosusceptible model of HGPS by crossing progeroid LmnaG609G/G609G mice, which carry a disease-causing mutation in the Lmna gene, with Ldlr-/- mice, a commonly used preclinical atherosclerosis model. Ldlr-/-LmnaG609G/G609G mice aged prematurely and had reduced body weight and survival. Compared with control mice, Ldlr-/-LmnaG609G/G609G mouse aortas showed a higher atherosclerosis burden and structural abnormalities typical of HGPS patients, including vascular smooth muscle cell depletion in the media, adventitial thickening, and elastin structure alterations. Atheromas of Ldlr-/-LmnaG609G/G609G mice had features of unstable plaques, including the presence of erythrocytes and iron deposits and reduced smooth muscle cell and collagen content. Ldlr-/-LmnaG609G/G609G mice faithfully recapitulate vascular features found in patients and thus provide a new tool for studying the mechanisms of HGPS-related atherosclerosis and for testing therapies.


Assuntos
Modelos Animais de Doenças , Músculo Liso Vascular/metabolismo , Progéria/metabolismo , Senilidade Prematura/metabolismo , Senilidade Prematura/fisiopatologia , Animais , Aorta/metabolismo , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Feminino , Lamina Tipo A/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos de Músculo Liso/metabolismo , Lâmina Nuclear/metabolismo , Placa Aterosclerótica/metabolismo , Progéria/fisiopatologia , Receptores de LDL/genética , Receptores de LDL/metabolismo
17.
Elife ; 92020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063665

RESUMO

Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here we demonstrated that cardiac Mφs increased the expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFß1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.


Assuntos
Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal , Macrófagos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Infarto do Miocárdio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Citometria de Fluxo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fenótipo , Traumatismo por Reperfusão , Disfunção Ventricular Esquerda
18.
EMBO Mol Med ; 12(2): e10862, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793743

RESUMO

Pathological angiogenesis contributes to cancer progression and chronic inflammatory diseases. In inflammatory bowel disease, the microvasculature expands by intussusceptive angiogenesis (IA), a poorly characterized mechanism involving increased blood flow and splitting of pre-existing capillaries. In this report, mice lacking the protease MT1-MMP in endothelial cells (MT1iΔEC ) presented limited IA in the capillary plexus of the colon mucosa assessed by 3D imaging during 1% DSS-induced colitis. This resulted in better tissue perfusion, preserved intestinal morphology, and milder disease activity index. Combined in vivo intravital microscopy and lentiviral rescue experiments with in vitro cell culture demonstrated that MT1-MMP activity in endothelial cells is required for vasodilation and IA, as well as for nitric oxide production via binding of the C-terminal fragment of MT1-MMP substrate thrombospondin-1 (TSP1) to CD47/αvß3 integrin. Moreover, TSP1 levels were significantly higher in serum from IBD patients and in vivo administration of an anti-MT1-MMP inhibitory antibody or a nonamer peptide spanning the αvß3 integrin binding site in TSP1 reduced IA during mouse colitis. Our results identify MT1-MMP as a new actor in inflammatory IA and a promising therapeutic target for inflammatory bowel disease.


Assuntos
Colite , Metaloproteinase 14 da Matriz , Óxido Nítrico/metabolismo , Trombospondina 1 , Animais , Colite/metabolismo , Colite/patologia , Células Endoteliais , Humanos , Intussuscepção , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Trombospondina 1/metabolismo
19.
EMBO Mol Med ; 11(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30862662

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin-driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E-deficient mice. However, the molecular mechanism underlying this process remains unknown. Using a transcriptomic approach, we identify here endoplasmic reticulum stress (ER) and the unfolded protein responses as drivers of VSMC death in two mouse models of HGPS exhibiting ubiquitous and VSMC-specific progerin expression. This stress pathway was also activated in HGPS patient-derived cells. Targeting ER stress response with a chemical chaperone delayed medial VSMC loss and inhibited atherosclerosis in both progeria models, and extended lifespan in the VSMC-specific model. Our results identify a mechanism underlying cardiovascular disease in HGPS that could be targeted in patients. Moreover, these findings may help to understand other vascular diseases associated with VSMC death, and provide insight into aging-dependent vascular damage related to accumulation of unprocessed toxic forms of lamin A.


Assuntos
Estresse do Retículo Endoplasmático , Lamina Tipo A/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/etiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Estimativa de Kaplan-Meier , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Progéria/tratamento farmacológico , Progéria/mortalidade , Progéria/patologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
20.
Cell Discov ; 5: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911407

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo LMNA c.1824C > T mutation, which provokes the expression of a dominant-negative mutant protein called progerin. Therapies proven effective in HGPS-like mouse models have yielded only modest benefit in HGPS clinical trials. To overcome the gap between HGPS mouse models and patients, we have generated by CRISPR-Cas9 gene editing the first large animal model for HGPS, a knockin heterozygous LMNA c.1824C > T Yucatan minipig. Like HGPS patients, HGPS minipigs endogenously co-express progerin and normal lamin A/C, and exhibit severe growth retardation, lipodystrophy, skin and bone alterations, cardiovascular disease, and die around puberty. Remarkably, the HGPS minipigs recapitulate critical cardiovascular alterations seen in patients, such as left ventricular diastolic dysfunction, altered cardiac electrical activity, and loss of vascular smooth muscle cells. Our analysis also revealed reduced myocardial perfusion due to microvascular damage and myocardial interstitial fibrosis, previously undescribed readouts potentially useful for monitoring disease progression in patients. The HGPS minipigs provide an appropriate preclinical model in which to test human-size interventional devices and optimize candidate therapies before advancing to clinical trials, thus accelerating the development of effective applications for HGPS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA