Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059783

RESUMO

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Assuntos
Autoanticorpos/genética , Doenças Autoimunes/genética , Linfócitos B/imunologia , Linfoma/genética , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/patologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Transporte/genética , Evolução Clonal/genética , Evolução Clonal/imunologia , Ciclina D3/genética , Guanilato Ciclase/genética , Humanos , Proteínas Imediatamente Precoces/genética , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Proteínas Inibidoras de Diferenciação/genética , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Mutação/imunologia , Proteínas de Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteínas Supressoras de Tumor/genética , Recombinação V(D)J/genética
2.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36446385

RESUMO

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Assuntos
Doenças Autoimunes , Leucemia Linfocítica Granular Grande , Animais , Camundongos , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Linfócitos T CD8-Positivos , Mutação com Ganho de Função , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patologia , Mutação , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Immunity ; 54(12): 2908-2921.e6, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788600

RESUMO

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.


Assuntos
Betacoronavirus/fisiologia , Vacinas contra COVID-19/imunologia , Infecções por Coronavirus/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sequência Conservada/genética , Evolução Molecular , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Desenvolvimento de Vacinas
4.
Cell ; 162(4): 926-6.e1, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276638

RESUMO

Dynamic interactions between B and T cells underpin the development of adaptive humoral immune responses to infections and vaccines. Recent advances in the molecular and spatiotemporal control of these interactions during primary responses have contributed greatly to elucidating the molecular pathogenesis of numerous immunodeficiency and autoimmune diseases. The next challenge is to determine how and where memory B and T cells interact during secondary responses to facilitate the rapid and robust response that characterizes anamnestic immunity.


Assuntos
Linfócitos B/metabolismo , Comunicação Celular , Linfócitos T/metabolismo , Animais , Formação de Anticorpos , Linfócitos B/citologia , Humanos , Memória Imunológica , Linfócitos T/citologia , Linfócitos T Reguladores/citologia
5.
Nature ; 591(7848): 131-136, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472215

RESUMO

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Morte Celular/genética , Feminino , Humanos , Macrófagos , Masculino , Camundongos , Mutação , Necrose , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Multimerização Proteica , Piroptose/genética
6.
Proc Natl Acad Sci U S A ; 119(28): e2123212119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867757

RESUMO

Humans lack the capacity to produce the Galα1-3Galß1-4GlcNAc (α-gal) glycan, and produce anti-α-gal antibodies upon exposure to the carbohydrate on a diverse set of immunogens, including commensal gut bacteria, malaria parasites, cetuximab, and tick proteins. Here we use X-ray crystallographic analysis of antibodies from α-gal knockout mice and humans in complex with the glycan to reveal a common binding motif, centered on a germline-encoded tryptophan residue at Kabat position 33 (W33) of the complementarity-determining region of the variable heavy chain (CDRH1). Immunoglobulin sequencing of anti-α-gal B cells in healthy humans and tick-induced mammalian meat anaphylaxis patients revealed preferential use of heavy chain germline IGHV3-7, encoding W33, among an otherwise highly polyclonal antibody response. Antigen binding was critically dependent on the presence of the germline-encoded W33 residue for all of the analyzed antibodies; moreover, introduction of the W33 motif into naive IGHV3-23 antibody phage libraries enabled the rapid selection of α-gal binders. Our results outline structural and genetic factors that shape the human anti-α-galactosyl antibody response, and provide a framework for future therapeutics development.


Assuntos
Anafilaxia , Anticorpos , Hipersensibilidade Alimentar , Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Doenças Transmitidas por Carrapatos , Trissacarídeos , Anafilaxia/imunologia , Animais , Anticorpos/química , Anticorpos/genética , Formação de Anticorpos/genética , Complexo Antígeno-Anticorpo/química , Cristalografia por Raios X , Hipersensibilidade Alimentar/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Camundongos , Camundongos Knockout , Biblioteca de Peptídeos , Conformação Proteica , Doenças Transmitidas por Carrapatos/imunologia , Trissacarídeos/genética , Trissacarídeos/imunologia
7.
J Infect Dis ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366567

RESUMO

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, analysis of these in patients is complicated by their treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. We also uncovered a critical, cell intrinsic role of DOCK2 in the priming of anti-viral CD8+ T cells and in particular their initial expansion, despite apparently normal early activation of these cells. When this defect was overcome by priming in vitro, DOCK2-deficient CD8+ T cells were surprisingly protective against HSV-1-disease, albeit not as effectively as wild type cells. These results shed light on a cellular deficiency that is likely to impact anti-viral immunity in DOCK2-deficient patients.

8.
J Clin Immunol ; 44(3): 66, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363477

RESUMO

B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.


Assuntos
Citidina Desaminase , Síndrome de Imunodeficiência com Hiper-IgM , Switching de Imunoglobulina , Humanos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Síndrome de Imunodeficiência com Hiper-IgM/genética , Imunoglobulina A/genética , Switching de Imunoglobulina/genética , Imunoglobulina G/genética , Fenótipo , Hipermutação Somática de Imunoglobulina
9.
J Autoimmun ; 142: 103129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952292

RESUMO

BACKGROUND: PR3 autoantibodies are essential to the diagnosis and monitoring of granulomatosus with polyangiitis, but to date no PR3 autoantibody sequences have been published. OBJECTIVES: To identify and characterise PR3-specific B cells from the peripheral blood of patients with PR3 autoantibodies. METHODS: Peripheral blood mononuclear cells from seven patients with PR3 autoantibodies were stained with PR3. B cells that bound PR3 underwent single cell sorting, transcriptome sequencing, and their immunoglobulin sequences expressed as antibodies and tested for PR3-specificity by ELISA. RESULTS: We identified 19 PR3-specific B cells from only one PR3-seropositive patient at a low frequency (0.0075 % of B cells) in the peripheral blood. These were polyclonal, IgG+ and enriched for IgG4, lambda pairing, IGHJ6 gene usage, CDRH3 length, IGHE and CD71 expression. They demonstrated relatively low levels of somatic hypermutation and variably reduced PR3 binding when reverted to germline. CONCLUSIONS: Identifying PR3-specific B cells in the peripheral blood is possible but challenging and those we did identify exhibited features suggesting that PR3-self reactivity may occur early in B-cell development.


Assuntos
Granulomatose com Poliangiite , Humanos , Mieloblastina , Anticorpos Anticitoplasma de Neutrófilos , Leucócitos Mononucleares/metabolismo , Autoanticorpos
10.
Mol Ther ; 31(7): 1979-1993, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012705

RESUMO

Success in the treatment of infants with spinal muscular atrophy (SMA) underscores the potential of vectors based on adeno-associated virus (AAV). However, a major obstacle to the full realization of this potential is pre-existing natural and therapy-induced anti-capsid humoral immunity. Structure-guided capsid engineering is one possible approach to surmounting this challenge but necessitates an understanding of capsid-antibody interactions at high molecular resolution. Currently, only mouse-derived monoclonal antibodies (mAbs) are available to structurally map these interactions, which presupposes that mouse and human-derived antibodies are functionally equivalent. In this study, we have characterized the polyclonal antibody responses of infants following AAV9-mediated gene therapy for SMA and recovered 35 anti-capsid mAbs from the abundance of switched-memory B (smB) cells present in these infants. For 21 of these mAbs, seven from each of three infants, we have undertaken functional and structural analysis measuring neutralization, affinities, and binding patterns by cryoelectron microscopy (cryo-EM). Four distinct patterns were observed akin to those reported for mouse-derived mAbs, but with early evidence of differing binding pattern preference and underlying molecular interactions. This is the first human and largest series of anti-capsid mAbs to have been comprehensively characterized and will prove to be powerful tools for basic discovery and applied purposes.


Assuntos
Anticorpos Monoclonais , Capsídeo , Lactente , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Microscopia Crioeletrônica , Capsídeo/química , Proteínas do Capsídeo/química , Dependovirus , Terapia Genética , Vetores Genéticos/genética
11.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417303

RESUMO

Sterile α motif domain-containing protein 9-like (SAMD9L) is encoded by a hallmark interferon-induced gene with a role in controlling virus replication that is not well understood. Here, we analyze SAMD9L function from the perspective of human mutations causing neonatal-onset severe autoinflammatory disease. Whole-genome sequencing of two children with leukocytoclastic panniculitis, basal ganglia calcifications, raised blood inflammatory markers, neutrophilia, anemia, thrombocytopaenia, and almost no B cells revealed heterozygous de novo SAMD9L mutations, p.Asn885Thrfs*6 and p.Lys878Serfs*13. These frameshift mutations truncate the SAMD9L protein within a domain a region of homology to the nucleotide-binding and oligomerization domain (NOD) of APAF1, ∼80 amino acids C-terminal to the Walker B motif. Single-cell analysis of human cells expressing green fluorescent protein (GFP)-SAMD9L fusion proteins revealed that enforced expression of wild-type SAMD9L repressed translation of red fluorescent protein messenger RNA and globally repressed endogenous protein translation, cell autonomously and in proportion to the level of GFP-SAMD9L in each cell. The children's truncating mutations dramatically exaggerated translational repression even at low levels of GFP-SAMD9L per cell, as did a missense Arg986Cys mutation reported recurrently as causing ataxia pancytopenia syndrome. Autoinflammatory disease associated with SAMD9L truncating mutations appears to result from an interferon-induced translational repressor whose activity goes unchecked by the loss of C-terminal domains that may normally sense virus infection.


Assuntos
Ataxia/patologia , Regulação da Expressão Gênica , Mutação de Sentido Incorreto , Síndromes Mielodisplásicas/patologia , Pancitopenia/patologia , Biossíntese de Proteínas , Proteínas Supressoras de Tumor/genética , Ataxia/genética , Criança , Feminino , Heterozigoto , Humanos , Recém-Nascido , Masculino , Síndromes Mielodisplásicas/genética , Pancitopenia/genética
12.
Eur J Immunol ; 52(6): 970-977, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253229

RESUMO

Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS-CoV-2- antibodies. Here, we use flow cytometry-based binding and pseudotyped SARS-CoV-2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry-based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS-CoV-2 variants.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
13.
Nat Immunol ; 12(5): 441-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21423173

RESUMO

Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses, but few genetic tools are available to test their function. Here we describe a previously unknown X-linked B cell-deficiency syndrome in mice caused by mutations in Atp11c, which encodes a member of the P4 ATPase family thought to serve as 'flippases' that concentrate aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11C resulted in a lower rate of phosphatidylserine translocation in pro-B cells and much lower pre-B cell and B cell numbers despite expression of pre-rearranged immunoglobulin transgenes or enforced expression of the prosurvival protein Bcl-2 to prevent apoptosis and abolished pre-B cell population expansion in response to a transgene encoding interleukin 7. The only other abnormalities we noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. Our results identify an intimate connection between phospholipid transport and B lymphocyte function.


Assuntos
Adenosina Trifosfatases/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Endocitose/imunologia , Fosfosserina/imunologia , Adenosina Trifosfatases/genética , Animais , Linfócitos B/enzimologia , Sequência de Bases , Feminino , Citometria de Fluxo , Genes bcl-2/imunologia , Interleucina-7/genética , Interleucina-7/imunologia , Fígado/citologia , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Mutagênese/imunologia , RNA Mensageiro/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Immunol ; 206(7): 1505-1514, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658297

RESUMO

IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous Ikzf1 mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in IKZF1 are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production. Through N-ethyl-N-nitrosourea mutagenesis, we have discovered a novel Ikzf1 mutant mouse with a missense mutation (L132P) in zinc finger 1 (ZF1) located in the DNA binding domain. Unlike other previously reported murine Ikzf1 mutations, this L132P point mutation (Ikzf1L132P ) conserves overall protein expression and has a B cell-specific phenotype with no effect on T cell development, indicating that ZF1 is not required for T cells. Mice have reduced Ab responses to immunization and show a progressive loss of serum Igs compared with wild-type littermates. IKZF1L132P overexpressed in NIH3T3 or HEK293T cells failed to localize to pericentromeric heterochromatin and bind target DNA sequences. Coexpression of wild-type and mutant IKZF1, however, allows for localization to pericentromeric heterochromatin and binding to DNA indicating a haploinsufficient mechanism of action for IKZF1L132P Furthermore, Ikzf1+/L132P mice have late onset defective Ig production, similar to what is observed in common variable immunodeficiency patients. RNA sequencing revealed a total loss of Hsf1 expression in follicular B cells, suggesting a possible functional link for the humoral immune response defects observed in Ikzf1L132P/L132P mice.


Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/genética , Fator de Transcrição Ikaros/genética , Mutação Puntual/genética , Animais , Formação de Anticorpos , Células HEK293 , Haploinsuficiência , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células NIH 3T3
15.
Nucleic Acids Res ; 49(19): e109, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34320181

RESUMO

Whole genome bisulphite sequencing (WGBS) permits the genome-wide study of single molecule methylation patterns. One of the key goals of mammalian cell-type identity studies, in both normal differentiation and disease, is to locate differential methylation patterns across the genome. We discuss the most desirable characteristics for DML (differentially methylated locus) and DMR (differentially methylated region) detection tools in a genome-wide context and choose a set of statistical methods that fully or partially satisfy these considerations to compare for benchmarking. Our data simulation strategy is both biologically informed-employing distribution parameters derived from large-scale consortium datasets-and thorough. We report DML detection ability with respect to coverage, group methylation difference, sample size, variability and covariate size, both marginally and jointly, and exhaustively with respect to parameter combination. We also benchmark these methods on FDR control and computational time. We use this result to backend and introduce an expanded version of DMRcate: an existing DMR detection tool for microarray data that we have extended to now call DMRs from WGBS data. We compare DMRcate to a set of alternative DMR callers using a similarly realistic simulation strategy. We find DMRcate and RADmeth are the best predictors of DMRs, and conclusively find DMRcate the fastest.


Assuntos
Metilação de DNA , DNA/metabolismo , Epigênese Genética , Genoma Humano , Análise de Sequência de DNA/estatística & dados numéricos , Benchmarking , Simulação por Computador , Ilhas de CpG , DNA/genética , Genômica/métodos , Humanos , Tamanho da Amostra , Sulfitos/química , Sequenciamento Completo do Genoma
16.
Proc Natl Acad Sci U S A ; 117(36): 22341-22350, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32855302

RESUMO

Conformational diversity and self-cross-reactivity of antigens have been correlated with evasion from neutralizing antibody responses. We utilized single cell B cell sequencing, biolayer interferometry and X-ray crystallography to trace mutation selection pathways where the antibody response must resolve cross-reactivity between foreign and self-proteins bearing near-identical contact surfaces, but differing in conformational flexibility. Recurring antibody mutation trajectories mediate long-range rearrangements of framework (FW) and complementarity determining regions (CDRs) that increase binding site conformational diversity. These antibody mutations decrease affinity for self-antigen 19-fold and increase foreign affinity 67-fold, to yield a more than 1,250-fold increase in binding discrimination. These results demonstrate how conformational diversity in antigen and antibody does not act as a barrier, as previously suggested, but rather facilitates high affinity and high discrimination between foreign and self.


Assuntos
Anticorpos , Diversidade de Anticorpos/genética , Autoantígenos , Rearranjo Gênico do Linfócito B/genética , Mutação/genética , Animais , Anticorpos/química , Anticorpos/genética , Anticorpos/metabolismo , Afinidade de Anticorpos/genética , Autoanticorpos/química , Autoanticorpos/genética , Autoanticorpos/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Regiões Determinantes de Complementaridade/genética , Imunidade Humoral/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Hipermutação Somática de Imunoglobulina/genética
17.
J Allergy Clin Immunol ; 150(4): 931-946, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35469842

RESUMO

BACKGROUND: Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES: This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS: STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS: IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS: These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.


Assuntos
Citocinas , Fator de Transcrição STAT5 , Diferenciação Celular , Citocinas/metabolismo , Homeostase , Humanos , Isotipos de Imunoglobulinas/metabolismo , RNA , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
18.
Immunol Rev ; 292(1): 61-75, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31556969

RESUMO

The adaptive immune system is tasked with producing antibodies that recognize a wide scope of potential pathogens, including those never before encountered, and concurrently avoiding formation of antibodies binding host tissues. The diverse repertoire of antibodies produced by V(D)J recombination inevitably includes autoantibodies that bind to self-antigens, estimated to be as much as 70% of nascent antibodies on immature B cells. Early theoretical models of tolerance hypothesized that such self-reactive clones could not possibly be allowed to survive and mature. However from the first direct view of the fate of nascent B cells carrying a self-binding antibody it was clear that many "forbidden clones" circulate to secondary lymphoid tissues, where they adopt an IgMlow IgD+ cell surface phenotype and are prevented from secreting autoantibodies by a series of tolerance checkpoints referred to as "clonal anergy." Since anergic B cells can be reactivated to secrete pathogenic autoantibodies in certain settings, the advantage of controlling self-reactive antibodies by clonal anergy has until recently remained enigmatic. Here we review this topic and recent advances showing that anergic B cells are recruited into the germinal center to mutate away from self-reactivity, undergoing "clonal redemption" into cells making antibodies with exquisite specificity for foreign immunogens.


Assuntos
Linfócitos B/imunologia , Anergia Clonal/imunologia , Tolerância Imunológica/imunologia , Imunidade/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linfócitos B/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo
19.
Breast Cancer Res ; 24(1): 31, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505346

RESUMO

BACKGROUND: The interferon response can influence the primary and metastatic activity of breast cancers and can interact with checkpoint immunotherapy to modulate its effects. Using N-ethyl-N-nitrosourea mutagenesis, we found a mouse with an activating mutation in oligoadenylate synthetase 2 (Oas2), a sensor of viral double stranded RNA, that resulted in an interferon response and prevented lactation in otherwise healthy mice. METHODS: To determine if sole activation of Oas2 could alter the course of mammary cancer, we combined the Oas2 mutation with the MMTV-PyMT oncogene model of breast cancer and examined disease progression and the effects of checkpoint immunotherapy using Kaplan-Meier survival analysis with immunohistochemistry and flow cytometry. RESULTS: Oas2 mutation prevented pregnancy from increasing metastases to lung. Checkpoint immunotherapy with antibodies against programmed death-ligand 1 was more effective when the Oas2 mutation was present. CONCLUSIONS: These data establish OAS2 as a therapeutic target for agents designed to reduce metastases and increase the effectiveness of checkpoint immunotherapy.


Assuntos
2',5'-Oligoadenilato Sintetase , Neoplasias da Mama , 2',5'-Oligoadenilato Sintetase/genética , Nucleotídeos de Adenina , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Interferons , Ligases , Camundongos , Oligorribonucleotídeos , Gravidez
20.
Immunol Cell Biol ; 100(8): 636-652, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713361

RESUMO

Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.


Assuntos
Vírus da Influenza A , Proteínas de Ligação à Região de Interação com a Matriz , Animais , Linfócitos T CD8-Positivos , Diferenciação Celular , Ativação Linfocitária , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA