Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2272067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37875265

RESUMO

PURPOSE: Magnetic particle hyperthermia is an approved cancer treatment that harnesses thermal energy generated by magnetic nanoparticles when they are exposed to an alternating magnetic field (AMF). Thermal stress is either directly cytotoxic or increases the susceptibility of cancer cells to standard therapies, such as radiation. As with other thermal therapies, the challenge with nanoparticle hyperthermia is controlling energy delivery. Here, we describe the design and implementation of a prototype pre-clinical device, called HYPER, that achieves spatially confined nanoparticle heating within a user-selected volume and location. DESIGN: Spatial control of nanoparticle heating was achieved by placing an AMF generating coil (340 kHz, 0-15 mT), between two opposing permanent magnets. The relative positions between the magnets determined the magnetic field gradient (0.7 T/m-2.3 T/m), which in turn governed the volume of the field free region (FFR) between them (0.8-35 cm3). Both the gradient value and position of the FFR within the AMF ([-14, 14]x, [-18, 18]y, [-30, 30]z) mm are values selected by the user via the graphical user interface (GUI). The software then controls linear actuators that move the static magnets to adjust the position of the FFR in 3D space based on user input. Within the FFR, the nanoparticles generate hysteresis heating; however, outside the FFR where the static field is non-negligible, the nanoparticles are unable to generate hysteresis loss power. VERIFICATION: We verified the performance of the HYPER to design specifications by independently heating two nanoparticle-rich areas of a phantom placed within the volume occupied by the AMF heating coil.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Temperatura Alta , Campos Magnéticos
2.
Nano Lett ; 17(3): 1648-1654, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28206771

RESUMO

Cancer remains one of the leading causes of death worldwide. Biomedical imaging plays a crucial role in all phases of cancer management. Physicians often need to choose the ideal diagnostic imaging modality for each clinical presentation based on complex trade-offs among spatial resolution, sensitivity, contrast, access, cost, and safety. Magnetic particle imaging (MPI) is an emerging tracer imaging modality that detects superparamagnetic iron oxide (SPIO) nanoparticle tracer with high image contrast (zero tissue background signal), high sensitivity (200 nM Fe) with linear quantitation, and zero signal depth attenuation. MPI is also safe in that it uses safe, in some cases even clinically approved, tracers and no ionizing radiation. The superb contrast, sensitivity, safety, and ability to image anywhere in the body lends MPI great promise for cancer imaging. In this study, we show for the first time the use of MPI for in vivo cancer imaging with systemic tracer administration. Here, long circulating MPI-tailored SPIOs were created and administered intravenously in tumor bearing rats. The tumor was highlighted with tumor-to-background ratio of up to 50. The nanoparticle dynamics in the tumor was also well-appreciated, with initial wash-in on the tumor rim, peak uptake at 6 h, and eventual clearance beyond 48 h. Lastly, we demonstrate the quantitative nature of MPI through compartmental fitting in vivo.


Assuntos
Meios de Contraste/análise , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/análise , Neoplasias/diagnóstico por imagem , Animais , Feminino , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Ratos
3.
Nanomaterials (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921935

RESUMO

Magnetic particle hyperthermia (MPH) enables the direct heating of solid tumors with alternating magnetic fields (AMFs). One challenge with MPH is the unknown particle distribution in tissue after injection. Magnetic particle imaging (MPI) can measure the nanoparticle content and distribution in tissue after delivery. The objective of this study was to develop a clinically translatable protocol that incorporates MPI data into finite element calculations for simulating tissue temperatures during MPH. To verify the protocol, we conducted MPH experiments in tumor-bearing mouse cadavers. Five 8-10-week-old female BALB/c mice bearing subcutaneous 4T1 tumors were anesthetized and received intratumor injections of Synomag®-S90 nanoparticles. Immediately following injection, the mice were euthanized and imaged, and the tumors were heated with an AMF. We used the Mimics Innovation Suite to create a 3D mesh of the tumor from micro-computerized tomography data and spatial index MPI to generate a scaled heating function for the heat transfer calculations. The processed imaging data were incorporated into a finite element solver, COMSOL Multiphysics®. The upper and lower bounds of the simulated tumor temperatures for all five cadavers demonstrated agreement with the experimental temperature measurements, thus verifying the protocol. These results demonstrate the utility of MPI to guide predictive thermal calculations for MPH treatment planning.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35238181

RESUMO

Magnetic nanomaterials that respond to clinical magnetic devices have significant potential as cancer nanotheranostics. The complexities of their physics, however, introduce challenges for these applications. Hyperthermia is a heat-based cancer therapy that improves treatment outcomes and patient survival when controlled energy delivery is combined with accurate thermometry. To date, few technologies have achieved the needed evolution for the demands of the clinic. Magnetic fluid hyperthermia (MFH) offers this potential, but to be successful it requires particle-imaging technology that provides real-time thermometry. Presently, the only technology having the potential to meet these requirements is magnetic particle imaging (MPI), for which a proof-of-principle demonstration with MFH has been achieved. Successful clinical translation and adoption of integrated MPI/MFH technology will depend on successful resolution of the technological challenges discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Diagnóstico por Imagem/métodos , Humanos , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
5.
Cancers (Basel) ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291935

RESUMO

This paper reports a comprehensive investigation of a magnetic nanoparticle (MNP), named M55, which belongs to a class of innovative doped ferrite nanomaterials, characterized by a self-limiting temperature. M55 is obtained from M48, an MNP previously described by our group, by implementing an additional purification step in the synthesis. M55, after citrate and glucose coating, is named G-M55. The present study aimed to demonstrate the properties of G-M55 as a diagnostic contrast agent for MRI and magnetic particle imaging (MPI), and as an antitumoral agent in magnetic fluid hyperthermia (MFH). Similar specific absorption rate values were obtained by standard MFH and by an MPI apparatus. This result is of interest in relation to the application of localized MFH by MPI apparatus. We demonstrated the biocompatibility of G-M55 in a triple-negative human breast cancer line (MDA-MB-231), and its efficacy as an MFH agent in the same cell line. We also demonstrated the efficacy of MFH treatment with G-M55 in an experimental model of breast cancer. Overall, our results pave the way for the clinical application of G-M55 as an MFH agent in breast cancer therapy, allowing not only efficient treatment by both standard MFH apparatus and MPI but also temperature monitoring.

6.
Materials (Basel) ; 14(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546176

RESUMO

The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.

7.
J Magn Reson Imaging ; 32(3): 684-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20815067

RESUMO

PURPOSE: To evaluate a novel soft, lightweight cushion that can match the magnetic susceptibility of human tissue. The magnetic susceptibility difference between air and tissue produces field inhomogeneities in the B(0) field, which leads to susceptibility artifacts in magnetic resonance imaging (MRI) studies. MATERIALS AND METHODS: Pyrolytic graphite (PG) microparticles were uniformly embedded into a foam cushion to reduce or eliminate field inhomogeneities at accessible air and tissue interfaces. 3T MR images and field maps of an air/water/PG foam phantom were acquired. Q measurements on a 4T tuned head coil and pulse sequence heating tests at 3T were also performed. RESULTS: The PG foam improved susceptibility matching, reduced the field perturbations in phantoms, does not heat, and is nonconductive. CONCLUSION: The susceptibility matched PG foam is lightweight, safe for patient use, adds no noise or MRI artifacts, is compatible with radiofrequency coil arrays, and improves B(0) homogeneity, which enables more robust MR studies.


Assuntos
Carbono/química , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Substâncias Viscoelásticas/química , Artefatos , Imagem Ecoplanar/métodos , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional , Teste de Materiais , Modelos Estruturais , Sensibilidade e Especificidade
8.
Theranostics ; 10(7): 2965-2981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194849

RESUMO

Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow. While RF hyperthermia can be directed invasively towards the site of treatment, non-invasive localization of heat through induction is challenging. In this review, we discuss recent progress in the field of RF magnetic fluid hyperthermia and introduce a new diagnostic imaging modality called magnetic particle imaging that allows for a focused theranostic approach encompassing treatment planning, treatment monitoring and spatially localized inductive heating.


Assuntos
Diagnóstico por Imagem/métodos , Compostos Férricos/análise , Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Terapia por Radiofrequência/métodos , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Materiais Revestidos Biocompatíveis , Diagnóstico por Imagem/instrumentação , Desenho de Equipamento , Compostos Férricos/administração & dosagem , Previsões , Humanos , Hipertermia Induzida/instrumentação , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Magnetismo/instrumentação , Masculino , Camundongos , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia
9.
IEEE Trans Med Imaging ; 38(10): 2389-2399, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30762537

RESUMO

Magnetic particle imaging (MPI) is a promising new tracer-based imaging modality. The steady-state, nonlinear magnetization physics most fundamental to MPI typically predicts improving resolution with increasing tracer magnetic core size. For larger tracers, and given typical excitation slew rates, this steady-state prediction is compromised by dynamic processes that induce a significant secondary blur and prevent us from achieving high resolution using larger tracers. Here, we propose a new method of excitation and signal encoding in MPI we call pulsed MPI to overcome this phenomenon. Pulsed MPI allows us to directly encode the steady-state magnetic physics into the time-domain signal. This in turn gives rise to a simple reconstruction algorithm to obtain images free of secondary relaxation-induced blur. Here, we provide a detailed description of our approach in 1D, discuss how it compares with alternative approaches, and show experimental data demonstrating better than 500- [Formula: see text] resolution (at 7 T/m) with large tracers. Finally, we show experimental images from a 2D implementation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Algoritmos , Imagens de Fantasmas
10.
IEEE Trans Med Imaging ; 37(9): 1989-1998, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990139

RESUMO

Magnetic Particle Imaging (MPI), a molecular imaging modality that images biocompatible superparamagnetic iron oxide tracers, is well-suited for clinical angiography, in vivo cell tracking, cancer detection, and inflammation imaging. MPI is sensitive and quantitative to tracer concentration, with a positive contrast that is not attenuated or corrupted by tissue background. Like other clinical imaging techniques, such as computed tomography, magnetic resonance imaging, and nuclear medicine, MPI can be modeled as a linear and shift-invariant system with a well-defined point spread function (PSF) capturing the system blur. The key difference, as we show here, is that the MPI PSF is highly dependent on scanning parameters and is anisotropic using only a single-imaging trajectory. This anisotropic resolution poses a major challenge for clear and accurate clinical diagnosis. In this paper, we generalize a tensor imaging theory for multidimensional x-space MPI to explore the physical source of this anisotropy, present a multi-channel scanning algorithm to enable isotropic resolution, and experimentally demonstrate isotropic MPI resolution through the construction and the use of two orthogonal excitation and detector coil pairs.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Algoritmos , Anisotropia , Imagens de Fantasmas
11.
ACS Nano ; 12(4): 3699-3713, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29570277

RESUMO

Image-guided treatment of cancer enables physicians to localize and treat tumors with great precision. Here, we present in vivo results showing that an emerging imaging modality, magnetic particle imaging (MPI), can be combined with magnetic hyperthermia into an image-guided theranostic platform. MPI is a noninvasive 3D tomographic imaging method with high sensitivity and contrast, zero ionizing radiation, and is linearly quantitative at any depth with no view limitations. The same superparamagnetic iron oxide nanoparticle (SPIONs) tracers imaged in MPI can also be excited to generate heat for magnetic hyperthermia. In this study, we demonstrate a theranostic platform, with quantitative MPI image guidance for treatment planning and use of the MPI gradients for spatial localization of magnetic hyperthermia to arbitrarily selected regions. This addresses a key challenge of conventional magnetic hyperthermia-SPIONs delivered systemically accumulate in off-target organs ( e.g., liver and spleen), and difficulty in localizing hyperthermia results in collateral heat damage to these organs. Using a MPI magnetic hyperthermia workflow, we demonstrate image-guided spatial localization of hyperthermia to the tumor while minimizing collateral damage to the nearby liver (1-2 cm distance). Localization of thermal damage and therapy was validated with luciferase activity and histological assessment. Apart from localizing thermal therapy, the technique presented here can also be extended to localize actuation of drug release and other biomechanical-based therapies. With high contrast and high sensitivity imaging combined with precise control and localization of the actuated therapy, MPI is a powerful platform for magnetic-based theranostics.


Assuntos
Antineoplásicos/farmacologia , Calefação , Hipertermia Induzida , Nanopartículas de Magnetita/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Imagem Óptica , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Campos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus
12.
Br J Radiol ; 91(1091): 20180326, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29888968

RESUMO

Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.


Assuntos
Meios de Contraste , Magnetismo/métodos , Nanopartículas de Magnetita , Neoplasias/diagnóstico por imagem , Angiografia/métodos , Tecnologia Biomédica , Rastreamento de Células/métodos , Humanos , Magnetismo/instrumentação , Imagem de Perfusão/métodos , Sensibilidade e Especificidade , Marcadores de Spin , Nanomedicina Teranóstica/instrumentação , Nanomedicina Teranóstica/métodos
13.
Quant Imaging Med Surg ; 8(2): 114-122, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29675353

RESUMO

BACKGROUND: Islet transplantation (Tx) represents the most promising therapy to restore normoglycemia in type 1 diabetes (T1D) patients to date. As significant islet loss has been observed after the procedure, there is an urgent need for developing strategies for monitoring transplanted islet grafts. In this report we describe for the first time the application of magnetic particle imaging (MPI) for monitoring transplanted islets in the liver and under the kidney capsule in experimental animals. METHODS: Pancreatic islets isolated from Papio hamadryas were labeled with superparamagnetic iron oxides (SPIOs) and used for either islet phantoms or Tx in the liver or under the kidney capsule of NOD scid mice. MPI was used to image and quantify islet phantoms and islet transplanted experimental animals post-mortem at 1 and 14 days after Tx. Magnetic resonance imaging (MRI) was used to confirm the presence of labeled islets in the liver and under the kidney capsule 1 day after Tx. RESULTS: MPI of labeled islet phantoms confirmed linear correlation between the number of islets and the MPI signal (R2=0.988). Post-mortem MPI performed on day 1 after Tx showed high signal contrast in the liver and under the kidney capsule. Quantitation of the signal supports islet loss over time, which is normally observed 2 weeks after Tx. No MPI signal was observed in control animals. In vivo MRI confirmed the presence of labeled islets/islet clusters in liver parenchyma and under the kidney capsule one day after Tx. CONCLUSIONS: Here we demonstrate that MPI can be used for quantitative detection of labeled pancreatic islets in the liver and under the kidney capsule of experimental animals. We believe that MPI, a modality with no depth attenuation and zero background tissue signal could be a suitable method for imaging transplanted islet grafts.

14.
Curr Opin Chem Biol ; 45: 131-138, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29754007

RESUMO

Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Rastreamento de Células/instrumentação , Meios de Contraste/análise , Técnicas de Diagnóstico Cardiovascular/instrumentação , Magnetismo/instrumentação , Nanopartículas de Magnetita/análise , Animais , Rastreamento de Células/métodos , Desenho de Equipamento , Humanos , Magnetismo/métodos
15.
Phys Med Biol ; 62(9): 3483-3500, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28032621

RESUMO

Magnetic particle imaging (MPI) is a rapidly developing molecular and cellular imaging modality. Magnetic fluid hyperthermia (MFH) is a promising therapeutic approach where magnetic nanoparticles are used as a conduit for targeted energy deposition, such as in hyperthermia induction and drug delivery. The physics germane to and exploited by MPI and MFH are similar, and the same particles can be used effectively for both. Consequently, the method of signal localization through the use of gradient fields in MPI can also be used to spatially localize MFH, allowing for spatially selective heating deep in the body and generally providing greater control and flexibility in MFH. Furthermore, MPI and MFH may be integrated together in a single device for simultaneous MPI-MFH and seamless switching between imaging and therapeutic modes. Here we show simulation and experimental work quantifying the extent of spatial localization of MFH using MPI systems: we report the first combined MPI-MFH system and demonstrate on-demand selective heating of nanoparticle samples separated by only 3 mm (up to 0.4 °C s-1 heating rates and 150 W g-1 SAR deposition). We also show experimental data for MPI performed at a typical MFH frequency and show preliminary simultaneous MPI-MFH experimental data.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita , Nanomedicina Teranóstica/métodos , Diagnóstico por Imagem/instrumentação , Temperatura Alta , Campos Magnéticos , Nanomedicina Teranóstica/instrumentação
16.
IEEE Trans Biomed Circuits Syst ; 11(5): 1041-1052, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28742047

RESUMO

Inductive sensor-based measurement techniques are useful for a wide range of biomedical applications. However, optimizing the noise performance of these sensors is challenging at broadband frequencies, owing to the frequency-dependent reactance of the sensor. In this work, we describe the fundamental limits of noise performance and bandwidth for these sensors in combination with a low-noise amplifier. We also present three equivalent methods of noise matching to inductive sensors using transformer-like network topologies. Finally, we apply these techniques to improve the noise performance in magnetic particle imaging, a new molecular imaging modality with excellent detection sensitivity. Using a custom noise-matched amplifier, we experimentally demonstrate an 11-fold improvement in noise performance in a small animal magnetic particle imaging scanner.


Assuntos
Amplificadores Eletrônicos , Diagnóstico por Imagem/instrumentação , Magnetismo , Animais , Razão Sinal-Ruído , Telemetria , Tecnologia sem Fio
17.
Phys Med Biol ; 62(9): 3510-3522, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28218614

RESUMO

Pulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600 000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE. Iodinated CT pulmonary angiography is recommended for most patients, while nuclear medicine-based ventilation/perfusion (V/Q) scans are reserved for patients in whom the use of iodine is contraindicated. Magnetic particle imaging (MPI) is an emerging tracer imaging modality with high image contrast (no tissue background signal) and sensitivity to superparamagnetic iron oxide (SPIO) tracer. Importantly, unlike CT or nuclear medicine, MPI uses no ionizing radiation. Further, MPI is not derived from magnetic resonance imaging (MRI); MPI directly images SPIO tracers via their strong electronic magnetization, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI. Here, the first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusion agent, MAA-SPIOs.


Assuntos
Diagnóstico por Imagem/métodos , Pulmão/diagnóstico por imagem , Nanopartículas de Magnetita , Imagem de Perfusão/métodos , Embolia Pulmonar/diagnóstico por imagem , Animais , Diagnóstico por Imagem/instrumentação , Feminino , Imagem de Perfusão/instrumentação , Ratos , Ratos Endogâmicos F344
18.
Phys Med Biol ; 62(9): 3501-3509, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378708

RESUMO

Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita , Animais , Diagnóstico por Imagem/instrumentação , Feminino , Ratos , Ratos Endogâmicos F344
19.
Mol Imaging Biol ; 19(3): 385-390, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396973

RESUMO

Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques-but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We invite interested investigators to join the MPI Interest Group and contribute new insights and innovations to the MPI field.


Assuntos
Dextranos/química , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Animais , Humanos
20.
Phys Med Biol ; 62(9): 3440-3453, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28177301

RESUMO

Magnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI's utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body. Here, we describe the biodistribution and clearance for two commonly used tracers in MPI: Ferucarbotran (Meito Sangyo Co., Japan) and LS-oo8 (LodeSpin Labs, Seattle, WA). We successfully demonstrate that 3D MPI is able to quantitatively assess short-term biodistribution, as well as long-term tracking and clearance of these tracers in vivo.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Animais , Feminino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Ratos , Ratos Endogâmicos F344 , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA