RESUMO
Our understanding of the manner in which Rab proteins regulate intracellular vesicular transport has progressed remarkably in the last one or two decades by application of a wide spectrum of biochemical, biophysical and cell biological methods, augmented by the methods of chemical biology. Important additional insights have arisen from examination of the manner in which certain bacteria can manipulate vesicular transport mechanisms. The progress in these areas is summarized here.
Assuntos
Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Bactérias/citologia , Bactérias/metabolismo , Humanos , Proteínas rab de Ligação ao GTP/químicaRESUMO
Prenylated Rab proteins exist in the cytosol as soluble, high-affinity complexes with GDI that need to be disrupted for membrane attachment and targeting of Rab proteins. The Legionella pneumophila protein DrrA displaces GDI from Rab1:GDI complexes, incorporating Rab1 into Legionella-containing vacuoles and activating Rab1 by exchanging GDP for GTP. Here, we present the crystal structure of a complex between the GEF domain of DrrA and Rab1 and a detailed kinetic analysis of this exchange. DrrA efficiently catalyzes nucleotide exchange and mimics the general nucleotide exchange mechanism of mammalian GEFs for Ras-like GTPases. We show that the GEF activity of DrrA is sufficient to displace prenylated Rab1 from the Rab1:GDI complex. Thus, apparent GDI displacement by DrrA is linked directly to nucleotide exchange, suggesting a basic model for GDI displacement and specificity of Rab localization that does not require discrete GDI displacement activity.