Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Methods ; 15(33): 4066-4076, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37551420

RESUMO

We report the results of studies related to the fabrication of a nanostructured graphene oxide (GO)-based electrochemical genosensor for neonatal sepsis detection. Initially, we selected the fimA gene of E. coli for nenonatal sepsis detection and further designed a 20-mer long amine-terminated oligonucleotide. This designed oligonucleotide will work as a bioreceptor for the detection of the virulent fimA gene. An electrochemical genosensor was further developed where GO was used as an immobilization matrix. For the formation of a thin film of GO on an indium tin oxide (ITO)-coated glass electrode, an optimized DC potential of 10 V for 90 s was applied via an electrophoretic deposition unit. Thereafter, the designed oligonucleotides were immobilized through EDC-NHS chemistry. The nanomaterial and fabricated electrodes were characterized via X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and cyclic voltammetry techniques. The fabricated genosensor (BSA/pDNA/GO/ITO) has the ability to detect the target fimA gene with a linear detection range of 10-12 M to 10-6 M, a lower detection limit of 10-12 M and a sensitivity of 114.7 µA M-1 cm-2. We also investigated the biosensing ability of the developed genosensor in an artificial serum sample and the obtained electrochemical results were within the acceptable percentage relative standard deviation (% RSD), indicating that the fabricated genosensor can be used for the detection of neonatal sepsis by using a serum sample.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Sepse Neonatal , Humanos , Recém-Nascido , Sepse Neonatal/diagnóstico , Escherichia coli , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Oligonucleotídeos
2.
Artif Cells Nanomed Biotechnol ; 51(1): 476-490, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656048

RESUMO

Neonatal sepsis is considered as alarming medical emergency and becomes the common global reason of neonatal mortality. Non-specific symptoms and limitations of conventional diagnostic methods for neonatal sepsis mandate fast and reliable method to diagnose disease for point of care application. Recently, disease specific biomarkers have gained interest for rapid diagnosis that led to the development of electrochemical biosensor with enhanced specificity, sensitivity, cost-effectiveness and user-friendliness. Other than conventional biomarker C-reactive protein to diagnose neonatal sepsis, several potential biomarkers including Procalcitonin (PCT), Serum amyloid A (SAA) and other candidates are extensively investigated. The present review provides insights on advancements and diagnostic abilities of protein and nucleotide based biomarkers with their incorporation in developing electrochemical biosensors by employing novel fabrication strategies. This review provides an overview of most promising biomarker and its capability for neonatal sepsis diagnosis to fulfil future demand to develop electrochemical biosensor for point-of-care applications.


Assuntos
Sepse Neonatal , Recém-Nascido , Humanos , Sepse Neonatal/diagnóstico , Biomarcadores , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA