RESUMO
Reaction of Au(+) ((1)S(0) and (3)D) with O(2) and N(2)O is studied as a function of kinetic energy using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) primarily in its (1)S(0) (5d(10)) electronic ground state level but with some (3)D and perhaps higher lying excited states. The distribution of states can be altered by adding N(2)O, which completely quenches the excited states, or CH(4) to the flow gases. Cross sections as a function of kinetic energy are measured for both neutral reagents and both ground and excited states of Au(+). Formation of AuO(+) is common to both systems with the N(2)O system also exhibiting AuN(2)(+) and AuNO(+) formation. All reactions of Au(+) ((1)S(0)) are observed to be endothermic, whereas the excitation energy available to the (3)D state allows some reactions to be exothermic. Because of the closed shell character of ground state Au(+) ((1)S(0), 5d(10)), the reactivity of these systems is low and has cross sections with onsets and peaks at higher energies than expected from the known thermochemistry but lower than energies expected from impulsive processes. Analyses of the endothermic reaction cross sections yield the 0 K bond dissociation energy (BDE) in eV of D(0)(Au(+)-O) = 1.12 ± 0.08, D(0)(Au(+)-N(2)) ≥ 0.30 ± 0.04, and D(0)(Au(+)-NO) = 0.89 ± 0.17, values that are all speculative because of the unusual experimental behavior. Combining the AuO(+) BDE measured here with literature data also yields the ionization energy of AuO as 10.38 ± 0.23 eV. Quantum chemical calculations show reasonable agreement with the experimental bond energies and provide the electronic structures of these species.
Assuntos
Ouro/química , Óxido Nitroso/química , Oxigênio/química , Enxofre/química , Temperatura , Trítio/química , Íons/química , Simulação de Dinâmica Molecular , OxirreduçãoRESUMO
The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.