Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 539(7629): 437-442, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27642729

RESUMO

Macrophages play critical, but opposite, roles in acute and chronic inflammation and cancer. In response to pathogens or injury, inflammatory macrophages express cytokines that stimulate cytotoxic T cells, whereas macrophages in neoplastic and parasitic diseases express anti-inflammatory cytokines that induce immune suppression and may promote resistance to T cell checkpoint inhibitors. Here we show that macrophage PI 3-kinase γ controls a critical switch between immune stimulation and suppression during inflammation and cancer. PI3Kγ signalling through Akt and mTor inhibits NFκB activation while stimulating C/EBPß activation, thereby inducing a transcriptional program that promotes immune suppression during inflammation and tumour growth. By contrast, selective inactivation of macrophage PI3Kγ stimulates and prolongs NFκB activation and inhibits C/EBPß activation, thus promoting an immunostimulatory transcriptional program that restores CD8+ T cell activation and cytotoxicity. PI3Kγ synergizes with checkpoint inhibitor therapy to promote tumour regression and increased survival in mouse models of cancer. In addition, PI3Kγ-directed, anti-inflammatory gene expression can predict survival probability in cancer patients. Our work thus demonstrates that therapeutic targeting of intracellular signalling pathways that regulate the switch between macrophage polarization states can control immune suppression in cancer and other disorders.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Tolerância Imunológica/imunologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Feminino , Humanos , Inflamação/imunologia , Ativação Linfocitária , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Evasão Tumoral/imunologia
3.
Eur J Immunol ; 45(2): 513-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25430631

RESUMO

Toll-like receptors (TLRs) can recognize microbial patterns and utilize adaptor molecules, such as-MyD88 or (TRIF TIR-domain-containing adapter-inducing interferon-ß), to initiate downstream signaling that ultimately affects the initiation of adaptive immunity. In addition to this inflammatory role, TLR5 expression on dendritic cells can favor antigen presentation of flagellin peptides and thus increase the sensitivity of flagellin-specific T-cell responses in vitro and in vivo. Here, we examined the role of alternative signaling pathways that might regulate flagellin antigen presentation in addition to MyD88. These studies suggest a requirement for spleen tyrosine kinase, a noncanonical TLR-signaling adaptor molecule, and its downstream molecule CARD9 in regulating the sensitivity of flagellin-specific CD4(+) T-cell responses in vitro and in vivo. Thus, a previously unappreciated signaling pathway plays an important role in regulating the dominance of flagellin-specific T-cell responses.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Flagelina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais/imunologia , Imunidade Adaptativa , Animais , Apresentação de Antígeno , Proteínas Adaptadoras de Sinalização CARD/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Comunicação Celular , Proliferação de Células , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Flagelina/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Interleucina-2/genética , Interleucina-2/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo , Proteínas Tirosina Quinases/imunologia , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/imunologia , Quinase Syk , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia
4.
J Biol Chem ; 287(53): 44143-50, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23148225

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) and TGFß-activated kinase 1 (TAK1) are considered as key intermediates in Toll-like receptor (TLR) signaling. However, the role of TRAF6 and TAK1 in C-type lectin receptors (CLRs) in response to fungal infection has not been studied. In this study, we have utilized macrophages derived from TRAF6 knock-out mice and myeloid-specific TAK1-deficient mice and determined the role of TRAF6 and TAK1 in CLR-induced signal transduction events. We demonstrate that TRAF6 and TAK1 are required for NF-κB and JNK activation, and expression of proinflammatory cytokines in response to Candida albicans infection. Our results highlight TRAF6 and TAK1 as key components in the signaling cascade downstream of C-type lectin receptors and as critical mediators of the anti-fungal immune response. Therefore, our studies provide a mechanistic understanding of the host immune response to C. albicans, which has a significant impact for the development of anti-fungal therapeutics and in understanding risk-factors and determining susceptibility to C. albicans infection.


Assuntos
Candida albicans/fisiologia , Candidíase/imunologia , Lectinas Tipo C/imunologia , MAP Quinase Quinase Quinases/imunologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/imunologia , Animais , Candida albicans/imunologia , Candidíase/enzimologia , Candidíase/genética , Células Cultivadas , Feminino , Humanos , Lectinas Tipo C/genética , MAP Quinase Quinase Quinases/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 6 Associado a Receptor de TNF/genética
5.
J Biol Chem ; 286(51): 43651-43659, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22041900

RESUMO

C-type lectin receptors (CLRs) such as Dectin-2 function as pattern recognition receptors to sense fungal infection. However, the signaling pathways induced by these receptors remain largely unknown. Previous studies suggest that the CLR-induced signaling pathway may utilize similar signaling components as the B cell receptor-induced signaling pathway. Phospholipase Cγ2 (PLCγ2) is a key component in B cell receptor signaling, but its role in other signaling pathways has not been fully characterized. Here, we show that PLCγ2 functions downstream of Dectin-2 in response to the stimulation by the hyphal form of Candida albicans, an opportunistic pathogenic fungus. Using PLCγ2- and PLCγ1-deficient macrophages, we found that the lack of PLCγ2, but not PLCγ1, impairs cytokine production in response to infection with C. albicans. PLCγ2 deficiency results in the defective activation of NF-κB and MAPK and a significantly reduced production of reactive oxygen species following fungal challenge. In addition, PLCγ2-deficient mice are defective in clearing C. albicans infection in vivo. Together, these findings demonstrate that PLCγ2 plays a critical role in CLR-induced signaling pathways, governing antifungal innate immune responses.


Assuntos
Lectinas Tipo C/metabolismo , Fosfolipase C gama/imunologia , Animais , Antifúngicos/farmacologia , Medula Óssea/metabolismo , Candida albicans/metabolismo , Sistema Imunitário , Imunidade Inata , Lectinas/química , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais
6.
Cancer Discov ; 6(3): 270-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26715645

RESUMO

UNLABELLED: Pancreas ductal adenocarcinoma (PDAC) has one of the worst 5-year survival rates of all solid tumors, and thus new treatment strategies are urgently needed. Here, we report that targeting Bruton tyrosine kinase (BTK), a key B-cell and macrophage kinase, restores T cell-dependent antitumor immune responses, thereby inhibiting PDAC growth and improving responsiveness to standard-of-care chemotherapy. We report that PDAC tumor growth depends on cross-talk between B cells and FcRγ(+) tumor-associated macrophages, resulting in T(H)2-type macrophage programming via BTK activation in a PI3Kγ-dependent manner. Treatment of PDAC-bearing mice with the BTK inhibitor PCI32765 (ibrutinib) or by PI3Kγ inhibition reprogrammed macrophages toward a T(H)1 phenotype that fostered CD8(+) T-cell cytotoxicity, and suppressed PDAC growth, indicating that BTK signaling mediates PDAC immunosuppression. These data indicate that pharmacologic inhibition of BTK in PDAC can reactivate adaptive immune responses, presenting a new therapeutic modality for this devastating tumor type. SIGNIFICANCE: We report that BTK regulates B-cell and macrophage-mediated T-cell suppression in pancreas adenocarcinomas. Inhibition of BTK with the FDA-approved inhibitor ibrutinib restores T cell-dependent antitumor immune responses to inhibit PDAC growth and improves responsiveness to chemotherapy, presenting a new therapeutic modality for pancreas cancer.


Assuntos
Comunicação Celular/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Receptores de IgG/metabolismo , Transdução de Sinais
7.
J Exp Med ; 211(11): 2307-21, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25267792

RESUMO

Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)-mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1-induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)-dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans-infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fungos/imunologia , Lectinas Tipo C/metabolismo , Micoses/imunologia , Micoses/metabolismo , Proteínas ras/metabolismo , ras-GRF1/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/imunologia , Candidíase/genética , Candidíase/imunologia , Candidíase/metabolismo , Candidíase/mortalidade , Ativação Enzimática/efeitos dos fármacos , Feminino , Fungos/efeitos dos fármacos , Fungos/genética , Humanos , Imunidade Inata , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Micoses/genética , Micoses/mortalidade , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais , beta-Glucanas/farmacologia , Proteínas ras/genética
8.
J Exp Med ; 210(8): 1575-90, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23825189

RESUMO

Reversible ubiquitin modification of cell signaling molecules has emerged as a critical mechanism by which cells respond to extracellular stimuli. Although ubiquitination of TGF-ß-activated kinase 1 (TAK1) is critical for NF-κB activation in T cells, the regulation of its deubiquitination is unclear. We show that USP18, which was previously reported to be important in regulating type I interferon signaling in innate immunity, regulates T cell activation and T helper 17 (Th17) cell differentiation by deubiquitinating the TAK1-TAB1 complex. USP18-deficient T cells are defective in Th17 differentiation and Usp18(-/-) mice are resistant to experimental autoimmune encephalomyelitis (EAE). In response to T cell receptor engagement, USP18-deficient T cells exhibit hyperactivation of NF-κB and NFAT and produce increased levels of IL-2 compared with the wild-type controls. Importantly, USP18 is associated with and deubiquitinates the TAK1-TAB1 complex, thereby restricting expression of IL-2. Our findings thus demonstrate a previously uncharacterized negative regulation of TAK1 activity during Th17 differentiation, suggesting that USP18 may be targeted to treat autoimmune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endopeptidases/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Catálise , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Endopeptidases/genética , Expressão Gênica , Técnicas de Inativação de Genes , Interleucina-2/antagonistas & inibidores , Interleucina-2/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Th17/imunologia , Ubiquitina Tiolesterase , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA