Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(9): 2573-2588, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35706133

RESUMO

The isohydric-anisohydric continuum describes the relative stringency of stomatal control of leaf water potential (ψleaf ) during drought. Hydroscape area (HA)-the water potential landscape over which stomata regulate ψleaf -has emerged as a useful metric of the iso/anisohydric continuum because it is strongly linked to several hydraulic, photosynthetic and structural traits. Previous research on HA focused on broad ecological patterns involving several plant clades. Here we investigate the relationships between HA and climatic conditions and functional traits across ecologically diverse but closely related species while accounting for phylogeny. Across a macroclimatic moisture gradient, defined by the ratio of mean annual precipitation to mean annual pan evaporation (P/Ep ), HA decreased with increased P/Ep across 10 Eucalyptus species. Greater anisohydry reflects lower turgor loss points and greater hydraulic safety, mirroring global patterns. Larger HA coincides with mesophyll photosynthetic capacity that is more sensitive to ψleaf . Hydroscapes exhibit little plasticity in response to variation in water supply, and the extent of plasticity does not vary with P/Ep of native habitats. These findings strengthen the case that HA is a useful metric for characterizing drought tolerance and water-status regulation.


Assuntos
Eucalyptus , Secas , Eucalyptus/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA