Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 23(4): e53684, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35179289

RESUMO

Preservation of nucleosomes during replication has been extensively studied, while the maintenance of nucleosomes during transcription has gotten less attention. The histone chaperone FACT has a role in transcription elongation, although whether it disassembles or assembles nucleosomes during this process is unclear. To elucidate the function of FACT in mammals, we deleted the Ssrp1 subunit of FACT in adult mice. FACT loss is lethal, possibly due to the loss of the earliest progenitors in bone marrow and intestine, while more differentiated cells are not affected. Using cells isolated from several tissues, we show that FACT loss reduces the viability of stem cells but not of cells differentiated in vitro. FACT depletion increases chromatin accessibility in a transcription-dependent manner in adipose mesenchymal stem cells, indicating that nucleosomes are lost in these cells during transcription in the absence of FACT. We also observe activation of interferon (IFN) signaling and the accumulation of immunocytes in organs sensitive to FACT loss. Our data indicate that FACT maintains chromatin integrity during transcription in mammalian adult stem cells, suggesting that chromatin transcription in stem cells and differentiated cells is different.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Nucleossomos , Animais , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mamíferos/metabolismo , Camundongos , Células-Tronco/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
2.
iScience ; 23(6): 101177, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32498018

RESUMO

Histone chaperone FACT is commonly expressed and essential for the viability of transformed but not normal cells, and its expression levels correlate with poor prognosis in patients with cancer. FACT binds several components of nucleosomes and has been viewed as a factor destabilizing nucleosomes to facilitate RNA polymerase passage. To connect FACT's role in transcription with the viability of tumor cells, we analyzed genome-wide FACT binding to chromatin in conjunction with transcription in mouse and human cells with different degrees of FACT dependence. Genomic distribution and density of FACT correlated with the intensity of transcription. However, FACT knockout or knockdown was unexpectedly accompanied by the elevation, rather than suppression, of transcription and with the destabilization of chromatin in transformed, but not normal cells. These data suggest that FACT stabilizes and reassembles nucleosomes disturbed by transcription. This function is vital for tumor cells because malignant transformation is accompanied by chromatin destabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA