Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(3): e1004779, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811886

RESUMO

Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.


Assuntos
Fator Regulador 3 de Interferon/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Receptores Imunológicos , Transdução de Sinais/genética , Toxoplasmose/genética
2.
J Virol ; 89(19): 10115-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178980

RESUMO

2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth.


Assuntos
2',5'-Oligoadenilato Sintetase/fisiologia , Vírus Sinciciais Respiratórios/fisiologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral/fisiologia , 2',5'-Oligoadenilato Sintetase/imunologia , Animais , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Celular , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Proteínas não Estruturais Virais/genética , Replicação Viral/imunologia
3.
Microb Pathog ; 50(2): 63-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21074603

RESUMO

Aeromonas hydrophila being a ubiquitous bacterium is prone to arsenic exposure. The present study was designed to determine the role of arsenic on growth and virulence of A. hydrophila. Exposure to arsenic (1 mg L(-1) and 2 mg L(-1)) had no effect on growth but significantly inhibited the hemolytic and cytotoxic potential of exposed bacteria. Transmission electron microscopy revealed loss of membrane integrity and presence of condensed cytoplasm suggestive of acute stress in bacteria exposed to arsenic. Arsenic-adapted bacteria were developed by repeated sub-culturing in presence of arsenic. Arsenic-adaptation led to significant recovery in hemolytic and cytotoxic potential. The arsenic-adapted bacteria exhibited normal membrane integrity, decreased cytoplasmic condensation and possessed scattered polysome like structures in the cytoplasm. A positive correlation was observed between arsenic tolerance and resistance to several antimicrobials. Arsenic-adaptation failed to confer cross-protection to mercury and cadmium stress. SDS-PAGE analysis revealed the expression of two new proteins of approximately 85 kDa and 79 kDa respectively in arsenic-adapted A. hydrophila. Plasmid-curing and transformation studies clearly indicate plasmid has no role on arsenic resistance trait of the bacteria. Our study, for the first time, reports a structure and function relationship of xenobiotics on bacteria.


Assuntos
Aeromonas hydrophila/crescimento & desenvolvimento , Aeromonas hydrophila/patogenicidade , Arsênio/toxicidade , Peixes-Gato/microbiologia , Doenças dos Peixes/microbiologia , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/ultraestrutura , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/efeitos dos fármacos
4.
Toxicol Appl Pharmacol ; 256(1): 44-51, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21798276

RESUMO

We had earlier shown that exposure to arsenic (0.50 µM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca(2+)) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca(2+) homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca(2+) levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus.


Assuntos
Apoptose/efeitos dos fármacos , Arsênio/toxicidade , Cálcio/fisiologia , Calpaína/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Homeostase/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Animais , Apoptose/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Peixes-Gato , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Homeostase/fisiologia , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/enzimologia , Isoenzimas/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Macrófagos/citologia
5.
3 Biotech ; 6(1): 72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330142

RESUMO

Biogas is a combination of methane, CO2, nitrogen, H2S and traces of few other gases. Almost any organic waste can be biologically transformed into biogas and other energy-rich organic compounds through the process of anaerobic digestion (AD) and thus helping in sustainable waste management. Although microbes are involved in each step of AD, knowledge about those microbial consortia is limited due to the lack of phylogenetic and metabolic data of predominantly unculturable microorganisms. However, culture-independent methods like PCR-based ribotyping has been successfully employed to get information about the microbial consortia involved in AD. Microbes identified have been found to belong mainly to the bacterial phyla of Proteobacteria, Chloroflexi, Firmicutes and Bacteroidetes. Among the archaeal population, the majority have been found to be methanogens (mainly unculturable), the remaining being thermophilic microbes. Thus, the AD process as a whole could be controlled by regulating the microbial consortia involved in it. Optimization in the feedstock, pH, temperature and other physical parameters would be beneficial for the microbial growth and viability and thus helpful for biogas production in AD. Besides, the biogas production is also dependent upon the activity of several key genes, ion-specific transporters and enzymes, like genes coding for methyl-CoM reductase, formylmethanofuran transferase, formate dehydrogenase present in the microbes. Fishing for these high-efficiency genes will ultimately increase the biogas production and sustain the production plant.

6.
Cell Res ; 23(8): 1025-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23877405

RESUMO

The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named "NS-degradasome" (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity.


Assuntos
Imunidade Inata , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Hepacivirus/metabolismo , Humanos , Interferon Tipo I/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nocodazol/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo
7.
Dev Comp Immunol ; 37(3-4): 323-33, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22366184

RESUMO

The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.


Assuntos
Aeromonas hydrophila , Calpaína/metabolismo , Caspase 3/metabolismo , Peixes-Gato , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Rim Cefálico/citologia , Macrófagos/citologia , Animais , Apoptose , Cálcio/metabolismo , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Rim Cefálico/imunologia , Macrófagos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA