Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 145(32): 17678-17688, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527433

RESUMO

Singlet fission (SF) has been explored as a viable route to improve photovoltaic performance by producing more excitons. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron superexchange to generate triplet pairs. However, strongly coupled chromophores often form excimers that can serve as an SF intermediate or a low-energy trap site. The succeeding decoherence process, however, requires an optimum electronic coupling to facilitate the isolation of triplet production from the initially prepared correlated triplet pair. Conformational flexibility and dielectric modulation can provide a means to tune the SF mechanism and efficiency by modulating the interchromophoric electronic interaction. Such a strategy cannot be easily adopted in densely stacked traditional organic solids. Here, we show that the assembly of the SF-active chromophores around well-defined pores of solution-stable metal-organic frameworks (MOFs) can be a great platform for a modular SF process. A series of three new MOFs, built out from 9,10-bis(ethynylenephenyl)anthracene-derived struts, show a topology-defined packing density and conformational flexibility of the anthracene core to dictate the SF mechanism. Various steady-state and transient spectroscopic data suggest that the initially prepared singlet population can prefer either an excimer-mediated SF or a direct SF (both through a virtual charge-transfer (CT) state). These solution-stable frameworks offer the tunability of the dielectric environment to facilitate the SF process by stabilizing the CT state. Given that MOFs are a great platform for various photophysical and photochemical developments, generating a large population of long-lived triplets can expand their utilities in various photon energy conversion schemes.

2.
J Am Chem Soc ; 145(13): 7268-7277, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947559

RESUMO

Polyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites. Nevertheless, the pervasive presence of transition metal sulfur clusters metalloenzymes or cofactors that catalyze reduction reactions and the justifiable proliferation of studies of two-dimensional (2D) metal-chalcogenides as reduction catalysts point to the promise of well-defined and controllable PTMs as reduction catalysts. Here, we report the fabrication of agglomeration-immune, reactant-accessible, capping-ligand-free CoIIMo6IVS24n- clusters as periodic arrays in a water-stable, hierarchically porous Zr-metal-organic framework (MOF; NU1K) by first installing a disk-like Anderson polyoxometalate, CoIIIMo6VIO24m-, in size-matched micropores where the siting is established via difference electron density (DED) X-ray diffraction (XRD) experiments. Flowing H2S, while heating, reduces molybdenum(VI) ions to Mo(IV) and quantitatively replaces oxygen anions with sulfur anions (S2-, HS-, S22-). DED maps show that MOF-templated POM-to-PTM conversion leaves clusters individually isolated in open-channel-connected micropores. The structure of the immobilized cluster as determined, in part, by X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analysis, and pair distribution function (PDF) analysis of total X-ray scattering agrees well with the theoretically simulated structure. PTM@MOF displays both electrocatalytic and photocatalytic competency for hydrogen evolution. Nevertheless, the initially installed PTM appears to be a precatalyst, gaining competency only after the loss of ∼3 to 6 sulfurs and exposure to hydride-forming metal ions.

3.
Langmuir ; 39(14): 4936-4942, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36994868

RESUMO

Starting with ferrocyanide ions in acidic aqueous solution, cyano-ferrate(II) species are post-synthetically grafted to the nodes of a mesoporous zirconium-based MOF, NU-1000. As indicated by single-crystal X-ray crystallography, grafting occurs by substitution of cyanide ligands by node-based hydroxo and oxo ligands rather than by substitution of node aqua ligands by cyanide ligands as bridges between Fe(II) and Zr(IV). The installed moieties yield a broad absorption band that is tentatively ascribed to iron-to-zirconium charge transfer. Consistent with Fe(III/II) redox activity, a modest fraction of the installed iron complexes are directly electrochemically addressable.

4.
Angew Chem Int Ed Engl ; 62(38): e202305323, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37524654

RESUMO

High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC ) but E S 1 ≥ 2 E T 1 ${{E}_{{S}_{1}}\ge {2E}_{{T}_{1}}}$ form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC but E S 1 ≤ 2 E T 1 ${{E}_{{S}_{1}}\le {2E}_{{T}_{1}}}$ . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.

5.
J Am Chem Soc ; 144(3): 1396-1406, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029989

RESUMO

Crystalline metal-organic frameworks (MOFs) are promising synthetic analogues of photosynthetic light-harvesting complexes (LHCs). The precise assembly of linkers (organic chromophores) around the topology-defined pores offers the evolution of unique photophysical behaviors that are reminiscence of LHCs. These include MOF excited states with photoabsorbed energy that is spatially dispersed over multiple linkers defining the molecular excitons. The multilinker molecular excitons display superradiance─a hallmark of coupled oscillators seen in LHCs─with radiative rate constant (krad) exceeding that of a single linker. Our theoretical model and experimental results on three zirconium MOFs, namely, PCN-222(Zn), NU-1000, and SIU-100, with similar topology but varying linkers suggest that the size of such molecular excitons depends on the electronic symmetry of the linker. This multilinker exciton model effectively predicts the energy transfer rate constant; corresponding single-step exciton hopping time, ranging from a few picoseconds in SIU-100 and NU-1000 to a few hundreds of picoseconds in PCN-222(Zn), matches well with the experimental data. The model also predicts the anisotropy of exciton displacement with preferential migration along the crystallographic c-axis. Overall, these findings establish various missing links defining the exciton size and dynamics in MOF-assembled linkers. The understandings will provide design principles, especially, positioning the catalysts or electrode relative to the linker orientation for low-density solar energy conversion systems.

6.
J Am Chem Soc ; 144(6): 2685-2693, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129331

RESUMO

Owing to their switchable spin states and dynamic electronic character, organic-based radical species have been invoked in phenomena unique to a variety of fields. When incorporated in solid state materials, generation of organic radicals proves challenging due to aggregation. Metal-organic frameworks (MOFs) are promising candidates for immobilization and stabilization of organic radicals because of the tunable spatial arrangement of organic linkers and metal nodes, which sequesters the reactive species. Herein, a flexible, redox-active tetracarboxylic acid linker bearing two imidazole units was chosen to construct a new Zr6-MOF, NU-910, with scu topology. By exploiting the structural flexibility of NU-910, we successfully modulate the dynamics between an isolated organic radical species and an organic radical π-dimer species in the MOF system. Single-crystal X-ray diffraction analysis reveals that through solvent exchange from N,N-diethylformamide to acetone, NU-910 undergoes a structural contraction with interlinker distances decreasing from 8.32 Å to 3.20 Å at 100 K. Organic radical species on the bridging linkers are generated via UV light irradiation. Direct observation of temperature-induced spin switches from an isolated radical species to a magnetically silent radical π-dimer in NU-910 after irradiation in the solid state was achieved via variable-temperature single-crystal X-ray diffraction and variable-temperature electron paramagnetic resonance spectroscopy. Ultraviolet-visible-near infrared spectroscopy and density functional theory calculations further substantiated the formation of a radical cation π-dimer upon irradiation. This work demonstrates the potential of using flexible MOFs as a platform to modulate radical spin states in the solid phase.

7.
Langmuir ; 38(4): 1533-1539, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35049315

RESUMO

Electrochemically active hydrogen-bonded organic frameworks (HOFs) offer opportunities to study charge transport in supramolecular systems where the rate of movement of charges is dependent on weak electronic coupling between individual components. Here, we used potential-step chronoamperometric measurements on electrochemically active, drop-cast HOF-102 films to estimate both redox-hopping-based apparent diffusion coefficients for charge transport and rate constants for linker-to-linker charge transfer (hole transfer) in the mesoporous two-dimensional (2D) plane created by interlinker hydrogen bonding. Also present are one-dimensional columns formed by stacking pyrene units. However, because the HOF-102 crystallites containing these columns are oriented parallel to an underlying electrode, dynamics of charge transport (hole-transport) along the column axis, in contrast to the plane, are not directly probed by the electrochemical measurements. Furthermore, we employed electrochemical impedance spectroscopy to measure the electrical conductivity of the as-deposited films biased at various potentials. We found that both the neutral/singly oxidized and the singly oxidized/doubly oxidized pyrene linker redox couples of HOF-102 can engender hopping-based film conductivity within the 2D plane of HOF-102. Consistent with the radical cation and radical dication nature of the singly and doubly oxidized linkers, respectively, HOF-102 films are electrochromic. The measured values of in-plane charge-diffusion coefficients (∼10-10 to 10-11 cm2 s-1) and electrical conductivity (∼10-6 to 10-8 S cm-1) compare favorably with those for related redox-conductive MOFs and suggest that the transport and conductivity parameters for HOF-102 are sufficiently large to support electrocatalysis by subsequently installed catalysts in films─specifically, films of micron or greater thickness, corresponding to the equivalent hundreds of monolayers of closely packed (i.e., face-to-face-packed) pyrene-derivatives, but with solution access (solvent, ion, and reactant access) still readily provided by channels oriented parallel to an underlying planar electrode.

8.
Langmuir ; 38(37): 11199-11209, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067497

RESUMO

Despite the importance of noncovalent interactions in the utilization of metal-organic frameworks (MOFs), using these interactions to functionalize MOFs has rarely been explored. The ease of functionalization and potential for surface-selective functionalization makes modification via noncovalent interactions promising for the creation of porous photocatalytic assemblies. Using isothermal titration calorimetry, photoluminescence measurements, and desorption experiments, we have explored the nature and magnitude of the interactions of [Ru(bpy)2(bpy-R)]2+-functionalized dyes with the surface of MIL-96, where R = C3, C8, C12, and C18 alkyl chains of either straight-chain or cyclic conformations. The orientation of the dyes appears to be flat against the surface with respect to the long alkyl chains, and the surface concentration approaches a monolayer at high initial concentrations of dye. Strangely, the dodecyl-functionalized dye, despite having a smaller interaction energy and larger footprint than either octyl-functionalized dye, achieves the highest maximum surface concentration. Based on photoluminescence spectra, desorption experiments, and ITC data, we believe this is due to the core of the dye being lifted from the surface as the chain length increases. Our understanding of these interactions is important for further utilization of this method for the functionalization of the internal and external surface areas of MOFs.

9.
J Am Chem Soc ; 143(13): 5053-5059, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779165

RESUMO

The interaction of low-energy light with matter that leads to the production of high-energy light is known as photon upconversion. This phenomenon is of importance because of its potential applications in optoelectronics, energy harvesting, and the biomedical arena. Herein, we report a pillared-paddlewheel metal-organic framework (MOF), constructed from a tetrakis(4-carboxyphenyl)porphyrin sensitizer and a dipyridyl thiazolothiazole annihilator, designed for efficient triplet-triplet annihilation upconversion (TTA-UC). Single-crystal X-ray diffraction studies reveal that the Zn-metalated sensitizers are coordinated to Zn2 nodes in a paddlewheel fashion, forming 2D sheets, to which are linked annihilators, such that each sensitizer is connected to five of them. The precise arrangements of sensitizers with respect to annihilators, and the high annihilator-to-sensitizer ratio, facilitate Dexter energy transfer. This level of organization in an extended structure leads to a high TTA-UC efficiency of 1.95% (theoretical maximum = 50%) at an excitation power density of 25 mW cm-2.

10.
Acc Chem Res ; 53(6): 1187-1195, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32401008

RESUMO

Metal-organic frameworks (MOFs) are a class of crystalline porous materials characterized by inorganic nodes and multitopic organic linkers. Because of their molecular-scale porosity and periodic intraframework chemical functionality, MOFs are attractive scaffolds for supporting and/or organizing catalysts, photocatalysts, chemical-sensing elements, small enzymes, and numerous other functional-property-imparting, nanometer-scale objects. Notably, these objects can be installed after the synthesis of the MOF, eliminating the need for chemical and thermal compatibility of the objects with the synthesis milieu. Thus, postsynthetically functionalized MOFs can present three-dimensional arrays of high-density, yet well-separated, active sites. Depending on the application and corresponding morphological requirements, MOF materials can be prepared in thin-film form, pelletized form, isolated single-crystal form, polycrystalline powder form, mixed-matrix membrane form, or other forms. For certain applications, most obviously catalytic hydrolysis and electro- or photocatalytic water splitting, but also many others, an additional requirement is water stability. MOFs featuring hexa-zirconium(IV)-oxy nodes satisfy this requirement. For applications involving electrocatalysis, charge storage, photoelectrochemical energy conversion, and chemiresistive sensing, a further requirement is electrical conductivity, as embodied in electron or hole transport. As most MOFs, under most conditions, are electrically insulating, imparting controllable charge-transport behavior is both a chemically intriguing and chemically compelling challenge.Herein, we describe three strategies to render zirconium-based metal-organic frameworks (MOFs) tunably electrically conductive and, therefore, capable of transporting charge on the few nanometers (i.e., several molecular units) to few micrometers (i.e., typical dimensions for MOF microcrystallites) scale. The first strategy centers on redox-hopping between periodically arranged, chemically equivalent sites, essentially repetitive electron (or hole) self-exchange. Zirconium nodes are electrically insulating, but they can function as grafting sites for (a) redox-active inorganic clusters or (b) molecular redox couples. Alternatively, charge hopping based on linker redox properties can be exploited. Marcus's theory of electron transfer has proven useful for understanding/predicting trends in redox-hopping based conductivity, most notably, in accounting for variations as great as 3000-fold depending on the direction of charge propagation through structurally anisotropic MOFs. In MOF environments, propagation of electronic charge via redox hopping is necessarily accompanied by movement of charge-compensating ions. Consequently, rates of redox hopping can depend on both the identity and concentration of ions permeating the MOF. In the context of electrocatalysis, an important goal is to transport electronic charge fast enough to match or exceed the inherent activity of MOF-based or MOF-immobilized catalysts.Bandlike electronic conductivity is the focus of an alternative strategy: one based on the introduction of molecular guests capable of forming donor-acceptor charge transfer complexes with the host framework. Theory again can be applied predictively to alter conductivity. A third strategy similarly emphasizes electronic conductivity, but it makes use of added bridges in the form of molecular oligomers or inorganic clusters that can then be linked to span the length of a MOF crystallite. For all strategies, retention of molecular-scale porosity is emphasized, as this property is key to many applications. Finally, while our focus is on Zr-MOFs, the described approaches clearly are extendable to other MOF compositions, as has already been demonstrated, in part, in studies by others.

11.
J Am Chem Soc ; 142(25): 11192-11202, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449353

RESUMO

Crystalline metal-organic frameworks (MOFs) can assemble chromophoric molecules into a wide range of spatial arrangements, which are controlled by the MOF topology. Like natural light-harvesting complexes (LHCs), the precise arrangement modulates interchromophoric interactions, in turn determining excitonic behavior and migration dynamics. To unveil the key factors that control efficient exciton displacements within MOFs, we first developed linkers with low electronic symmetry (as defined by large transition dipoles) and then assembled them into MOFs. These linkers possess extended conjugation along one molecular axis, engendering low optical bandgaps and improved oscillator strength for their lowest-energy transition (S0 → S1). This enhances absorption-emission spectral overlap and boosts the efficiency of Förster resonance energy transfer, which was observed experimentally by a sizable decrease in emission quantum yield (QY), accompanied by a faster population decay profile. We find that MOFs that orient these elongated linkers along their asymmetric pore channel, e.g., the hexagonal pores in an xly network, manifested >50% decrease in their emission QY with faster decay profiles relative to their corresponding solution dissolved linkers. This is due to an efficient migration of photogenerated excitons at the crystallite peripheral sites to internal sites, which was facilitated by polarized absorption-emission overlap among the parallelly aligned linkers. In contrast, symmetric MOFs, such as those with sqc-a topological net, orient elongated linkers along two perpendicular crystal axes, which hinders efficient exciton migration. The present study underscores that MOFs are promising to develop artificial LHCs, but that to achieve an efficient exciton displacement, appropriate topology-guided assembly is required to fully realize the true potential of linkers with low electronic symmetry.

12.
J Am Chem Soc ; 141(10): 4365-4371, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30773005

RESUMO

Porous materials, including metal-organic frameworks (MOFs), are known to undergo structural changes when subjected to applied hydrostatic pressures that are both fundamentally interesting and practically relevant. With the rich structural diversity of MOFs, the development of design rules to better understand and enhance the mechanical stability of MOFs is of paramount importance. In this work, the compressibilities of seven MOFs belonging to two topological families (representing the most comprehensive study of this type to date) were evaluated using in situ synchrotron X-ray powder diffraction of samples within a diamond anvil cell. The judicious selection of these materials, representing widely studied classes of MOFs, provides broadly applicable insight into the rigidity and compression of hybrid materials. An analysis of these data reveals that the bulk modulus depends on several structural parameters (e.g., void fraction and linker length). Furthermore, we find that lattice distortions play a major role in the compression of MOFs. This study is an important step toward developing a predictive model of the structural variables that dictate the compressibility of porous materials.

13.
J Am Chem Soc ; 141(44): 17696-17702, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31608628

RESUMO

Engendering electrical conductivity in otherwise insulating metal-organic framework (MOF) materials is key to rendering these materials fully functional for a range of potential applications, including electrochemical and photo-electrochemical catalysis. Here we report that the platform MOF, NU-1000, can be made electrically conductive via reversible electrochemical oxidation of a fraction of the framework's tetraphenylpyrene linkers, where the basis for conduction is redox hopping. At a microscopic level, redox hopping is akin to electron self-exchange and is describable by Marcus' well-known theory of electron transfer. At a macroscopic level, the hopping behavior leads to diffusive charge transport and is quantifiable as an apparent diffusion coefficient, Dhopping. Theory suggests that the csq topology of NU-1000, together with its characteristic one-dimensional mesopores, will result in direction-dependent, that is, anisotropic, electrical conductivity. Detailed computations suggest that the governing factor is the strength of electronic coupling between pairs of linkers sited in the a,b plane of the MOF versus the mesopore-aligned c axis of the crystal. The notion has been put to the test experimentally by configuring the MOF as an array of selectively oriented, electrode-supported crystallites, where the rodlike crystallites are either oriented largely normal to the electrode (requiring redox hopping along the c direction) or mainly parallel (requiring redox hopping mainly through the a,b plane). The orientations are preselected by preparing MOF films either via interfacial solvothermal synthesis or via electrophoretic deposition. In semiquantitative accord with computational predictions, Dhopping is up to ∼3500 times larger in the c direction than through the a,b plane. In addition to their fundamental significance, the findings have clear implications for the design and optimization of MOFs for electrocatalysis and for other applications that rely upon electrical conductivity.

14.
Inorg Chem ; 58(6): 3586-3590, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30799605

RESUMO

The crystal structures of thorium clusters are important for understanding the formation and transformation mechanisms of actinide species in solution, which can in turns benefit nuclear waste processing and management. However, stabilizing thorium clusters in aqueous solution is quite challenging because of their fast olation and oxolation reactions. Here, we report a thorium-based metal-organic framework, NU-905, with the formula [Th6(µ3-O)2(HCOO)4(H2O)6(TCPP)4] [TCPP = tetrakis(4-carboxyphenyl)porphyrin], synthesized by a solvothermal reaction in N, N-dimethylformamide and water at 120 °C. NU-905 contains a hexanuclear secondary building unit (SBU), [Th6(µ3-O)2(HCOO)4(H2O)6], which has never been reported previously. The SBUs are capped and bridged by the tetratopic linker TCPP to form a three-dimensional network with scu topology. The activated NU-905 exhibits permanent porosity and shows high catalytic activity for the selective photooxidation of a mustard gas simulant.

15.
Angew Chem Int Ed Engl ; 58(4): 1123-1128, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30474228

RESUMO

Processing metal-organic frameworks (MOFs) as films with controllable thickness on a substrate is increasingly crucial for many applications to realize function integration and performance optimization. Herein, we report a facile cathodic deposition process that enables the large-area preparation of uniform films of zeolitic imidazolate frameworks (ZIF-8, ZIF-71, and ZIF-67) with highly tunable thickness ranging from approximately 24 nm to hundreds of nanometers. Importantly, this oxygen-reduction-triggered cathodic deposition does not lead to the plating of reduced metals (Zn and Co). It is also operable cost-effectively in the absence of supporting electrolyte and facilitates the construction of well-defined sub-micrometer-sized heterogeneous structures within ZIF films.

16.
J Am Chem Soc ; 140(11): 3871-3875, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29502408

RESUMO

Nickel(IV) bis(dicarbollide) is incorporated in a zirconium-based metal-organic framework (MOF), NU-1000, to create an electrically conductive MOF with mesoporosity. All the nickel bis(dicarbollide) units are located as guest molecules in the microporous channels of NU-1000, which permits the further incorporation of other active species in the remaining mesopores. For demonstration, manganese oxide is installed on the nodes of the electrically conductive MOF. The electrochemically addressable fraction and specific capacitance of the manganese oxide in the conductive framework are more than 10 times higher than those of the manganese oxide in the parent MOF.

17.
Acc Chem Res ; 50(4): 805-813, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28177217

RESUMO

Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe its chemical basis along with the requirements for its successful implementation. We then present a small number of examples, with an emphasis on those that (a) convey the underlying concepts and/or (b) lead to functional structures (e.g., catalysts) that would be difficult or impossible to access via direct routes. The examples, however, are only illustrative, and a significant body of work exists from both our lab and others, especially for the SALE/PSE strategy. We refer readers to the papers cited and to the references therein. More exciting, in our view, will be new examples and new applications of the functionalization strategies-especially applications made possible by creatively combining the strategies. Underexplored (again, in our view) are implementations that impart electrical conductivity, enable increasingly selective chemical sensing, or facilitate cascade catalysis. It will be interesting to see where these strategies and others take this compelling field over the next few years.

18.
Langmuir ; 32(46): 12005-12012, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27933878

RESUMO

Transition metal sulfides show great promise for applications ranging from catalysis to electrocatalysis to photovoltaics due to their high stability and conductivity. Nickel sulfide, particularly known for its ability to electrochemically reduce protons to hydrogen gas nearly as efficiently as expensive noble metals, can be challenging to produce with certain surface site compositions or morphologies, e.g., conformal thin films. To this end, we employed atomic layer deposition (ALD), a preeminent method to fabricate uniform and conformal films, to construct thin films of nickel sulfide (NiSx) using bis(N,N'-di-tert-butylacetamidinato)nickel(II) (Ni(amd)2) vapor and hydrogen sulfide gas. Effects of experimental conditions such as pulse and purge times and temperature on the growth of NiSx were investigated. These revealed a wide temperature range, 125-225 °C, over which self-limiting NiSx growth can be observed. In situ quartz crystal microbalance (QCM) studies revealed conventional linear growth behavior for NiSx films, with a growth rate of 9.3 ng/cm2 per cycle being obtained. The ALD-synthesized films were characterized using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) methods. To assess the electrocatalyitic activity of NiSx for evolution of molecular hydrogen, films were grown on conductive-glass supports. Overpotentials at a current density of 10 mA/cm2 were recorded in both acidic and pH 7 phosphate buffer aqueous reaction media and found to be 440 and 576 mV, respectively, with very low NiSx loading. These results hint at the promise of ALD-grown NiSx materials as water-compatible electrocatalysts.

19.
Inorg Chem ; 54(20): 10007-14, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26441081

RESUMO

A series of Au(I) and Pt(II) acetylide complexes of a π-conjugated donor-acceptor-donor (D-A-D) chromophore were studied to develop quantitative structure-property relationships for their photophysical and nonlinear optical properties. The D-A-D chromophore consists of a "TBT" unit, where T = 3-hexyl-2,5-thienylene and BTD = 2,1,3-benzothiadiazole, capped with ethynylene groups. The D-A-D chromophore is functionalized with Au(I)PR3 (R = -Me and -Ph) and trans-Pt(II)(PR3)2-CCPh (R = -Me and -Bu) "auxochromes". All of the metal complexes were characterized by ground-state absorption, photoluminescence, nanosecond transient absorption, and two-photon absorption (2PA) spectroscopy. The experiments provided quantitative values of the photophysical parameters, including rates for radiative decay and intersystem crossing (ISC), triplet yields, and two-photon absorption cross sections. Pronounced solvatochromism in the fluorescence spectra suggests an enhanced dipole moment in the excited state of the complexes compared to the unmetalated TBT chromophore. The gold complexes feature larger fluorescence quantum yields and longer emission lifetimes compared to platinum. The Pt(II) complexes exhibit enhanced triplet-triplet absorption, reduced triplet-state lifetimes, and larger singlet oxygen quantum yields, consistent with more efficient ISC compared to the Au(I) complexes. When excited by 100 fs pulses, all of the D-A-D chromophores exhibit moderate two-photon absorption in the near-infrared between 700 and 900 nm. The 2PA cross section for the Au(I) complexes is almost the same as the unmetalated D-A-D chromophore (∼100 GM). The Pt(II) complexes exhibit significantly enhanced 2PA compared to the other chromophores, reaching 1000 GM at 750 nm. Taken together, the results indicate that the Pt(II) center is considerably more effective in inducing singlet-triplet ISC and in enhancing the 2PA cross section. This result reveals the greater promise for Pt(II) acetylides in chromophores for temporal and frequency agile nonlinear absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA