Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630790

RESUMO

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Assuntos
Variação Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimento Celular/genética , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Neurônios/metabolismo , Fenótipo , Tubulina (Proteína)/genética
2.
Neurol Neurochir Pol ; 49(4): 258-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26188943

RESUMO

OBJECTIVE: The aim of this study was to analyze the intra-/interfamilial phenotypic heterogeneity due to variants at the highly evolutionary conservative p.Arg1596 residue in the Nav1.1 subunit. MATERIALS/PARTICIPANTS: Among patients referred for analysis of the SCN1A gene one recurrent, heritable mutation was found in families enrolled into the study. Probands from those families even clinically diagnosed with atypical Dravet syndrome (DS), generalized epilepsy with febrile seizures plus (GEFS+), and focal epilepsy, had heterozygous p.Arg1596 His/Cys missense substitutions, c.4787G>T and c.4786C>T in the SCN1A gene. METHOD: Full clinical evaluation, including cognitive development, neurological examination, EEGs, MRI was performed in probands and affected family members in developmental age. The whole SCN1A gene sequencing was performed for all probands. The exon 25, where the identified missense substitutions are localized, was directly analyzed for the other family members. RESULTS: Mutation of the SCN1A p.1596Arg was identified in three families, in one case substitution p.Arg1596Cys and in two cases p.Arg1596His. Both mutations were previously described as pathogenic and causative for DS, GEFS+ and focal epilepsy. Spectrum of phenotypes among presented families with p.Arg1596 mutations shows heterogeneity ranged from asymptomatic cases, through FS and FS+ to GEFS+/Panayiotopoulos syndrome and epilepsies with and without febrile seizures, and epileptic encephalopathy such as DS. Phenotypes differ among patients displaying both focal and generalized epilepsies. Some patients demonstrated additionally Asperger syndrome and ataxia. CONCLUSION: Clinical picture heterogeneity of the patients carrying mutation of the same residue indicates the involvement of the other factors influencing the SCN1A gene mutations' penetrance.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Parciais/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adulto , Criança , Pré-Escolar , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
3.
J Appl Genet ; 64(3): 507-514, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37599337

RESUMO

Coenzyme Q5 (COQ5), a C-methyltransferase, modifies coenzyme Q10 (COQ10) during biosynthesis and interacts with polyA-tail regulating zinc-finger protein ZC3H14 in neural development. Here, we present a fifth patient (a third family) worldwide with neurodevelopmental and physiological symptoms including COQ10 deficiency. Our patient harbors one novel c.681+1G>A and one recurrent p.Gly118Ser variant within COQ5. The patient's mRNA profile reveals multiple COQ5 splice-variants. Subsequently, we comprehensively described patient's clinical features as compared to phenotype and symptoms of other known congenital coenzyme Q5-linked cases. A core spectrum of COQ5-associated symptoms includes reduced COQ10 levels, intellectual disability, encephalopathy, cerebellar ataxia, cerebellar atrophy speech regression/dysarthria, short stature, and developmental delays. Our patient additionally displays dysmorphia, microcephaly, and regressive social faculties. These results formally establish causal association of biallelic COQ5 mutation with pathology, outline a core COQ5-linked phenotype, and identify mRNA mis-splicing as the molecular mechanism underlying all COQ5 variant-linked pathology to date.


Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Deficiência Intelectual/genética , Microcefalia/genética
4.
Cells ; 12(2)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672274

RESUMO

Dravet syndrome (DRVT) is a rare form of neurodevelopmental disorder with a high risk of sudden unexpected death in epilepsy (SUDEP), caused mainly (>80% cases) by mutations in the SCN1A gene, coding the Nav1.1 protein (alfa-subunit of voltage-sensitive sodium channel). Mutations in SCN1A are linked to heterogenous epileptic phenotypes of various types, severity, and patient prognosis. Here we generated iPSC lines from fibroblasts obtained from three individuals affected with DRVT carrying distinct mutations in the SCN1A gene (nonsense mutation p.Ser1516*, missense mutation p.Arg1596His, and splicing mutation c.2589+2dupT). The iPSC lines, generated with the non-integrative approach, retained the distinct SCN1A gene mutation of the donor fibroblasts and were characterized by confirming the expression of the pluripotency markers, the three-germ layer differentiation potential, the absence of exogenous vector expression, and a normal karyotype. The generated iPSC lines were used to establish ventral forebrain organoids, the most affected type of neurons in the pathology of DRVT. The DRVT organoid model will provide an additional resource for deciphering the pathology behind Nav1.1 haploinsufficiency and drug screening to remediate the functional deficits associated with the disease.


Assuntos
Epilepsias Mioclônicas , Células-Tronco Pluripotentes Induzidas , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Epilepsias Mioclônicas/genética , Neurônios/metabolismo , Prosencéfalo/metabolismo
5.
Am J Med Genet B Neuropsychiatr Genet ; 159B(7): 760-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825934

RESUMO

Copy-number variants (CNVs) collectively represent an important cause of neurodevelopmental disorders such as developmental delay (DD)/intellectual disability (ID), autism, and epilepsy. In contrast to DD/ID, for which the application of microarray techniques enables detection of pathogenic CNVs in -10-20% of patients, there are only few studies of the role of CNVs in epilepsy and genetic etiology in the vast majority of cases remains unknown. We have applied whole-genome exon-targeted oligonucleotide array comparative genomic hybridization (array CGH) to a cohort of 102 patients with various types of epilepsy with or without additional neurodevelopmental abnormalities. Chromosomal microarray analysis revealed 24 non-polymorphic CNVs in 23 patients, among which 10 CNVs are known to be clinically relevant. Two rare deletions in 2q24.1q24.3, including KCNJ3 and 9q21.13 are novel pathogenic genetic loci and 12 CNVs are of unknown clinical significance. Our results further support the notion that rare CNVs can cause different types of epilepsy, emphasize the efficiency of detecting novel candidate genes by whole-genome array CGH, and suggest that the clinical application of array CGH should be extended to patients with unexplained epilepsies.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Genoma Humano , Adolescente , Transtorno Autístico/complicações , Transtorno Autístico/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/complicações , Epilepsia/complicações , Éxons , Dosagem de Genes , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Masculino
6.
Genes (Basel) ; 12(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946966

RESUMO

Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.


Assuntos
Sequenciamento do Exoma/métodos , Redes Reguladoras de Genes , Microcefalia/genética , Mutação , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/diagnóstico por imagem , Linhagem , Análise de Sequência de DNA
7.
Eur J Hum Genet ; 26(8): 1121-1131, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29706646

RESUMO

Malformations of cortical development (MCDs) manifest with structural brain anomalies that lead to neurologic sequelae, including epilepsy, cerebral palsy, developmental delay, and intellectual disability. To investigate the underlying genetic architecture of patients with disorders of cerebral cortical development, a cohort of 54 patients demonstrating neuroradiologic signs of MCDs was investigated. Individual genomes were interrogated for single-nucleotide variants (SNV) and copy number variants (CNV) with whole-exome sequencing and chromosomal microarray studies. Variation affecting known MCDs-associated genes was found in 16/54 cases, including 11 patients with SNV, 2 patients with CNV, and 3 patients with both CNV and SNV, at distinct loci. Diagnostic pathogenic SNV and potentially damaging variants of unknown significance (VUS) were identified in two groups of seven individuals each. We demonstrated that de novo variants are important among patients with MCDs as they were identified in 10/16 individuals with a molecular diagnosis. Three patients showed changes in known MCDs genes  and a clinical phenotype beyond the usual characteristics observed, i.e., phenotypic expansion, for a particular known disease gene clinical entity. We also discovered 2 likely candidate genes, CDH4, and ASTN1, with human and animal studies supporting their roles in brain development, and 5 potential candidate genes. Our findings emphasize genetic heterogeneity of MCDs disorders and postulate potential novel candidate genes involved in cerebral cortical development.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Malformações do Desenvolvimento Cortical/genética , Polimorfismo de Nucleotídeo Único , Caderinas/genética , Feminino , Heterogeneidade Genética , Humanos , Masculino , Malformações do Desenvolvimento Cortical/patologia , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética
8.
J Neurol Sci ; 338(1-2): 214-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24411407

RESUMO

Metachromatic leukodystrophy (MLD) is a rare lysosomal disorder caused by deficient activity of arylsulfatase A or the lack of saposin B, which results in the accumulation of sulfatide in the oligodendrocytes and in the Schwann cells. Three main clinical types of MLD can be distinguished according to the age of onset and the dynamics of clinical outcome: late infantile, juvenile, and adult. We report on a case of late infantile MLD presenting with cerebellar ataxia as the only first clinical sign preceding even changes in white matter visible in MR imaging. The diagnosis was made on the basis of successive MRI, characteristic of demyelination, which developed in the course of the disease, and on the results of the following biochemical and molecular analyses. Very low residual activity of arylsulfatase A was demonstrated in blood leukocytes and the patient was a homozygote for a common mutation c.459+1G>A in the ARSA gene. Since cerebellar ataxia is a relatively common but unspecific neurological symptom in toddlers, it is recommended that MLD be considered as part of the differential diagnosis even if the initial neuroimaging studies are normal and ataxia is the only clinical symptom of the disease.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Cerebrosídeo Sulfatase/genética , Leucodistrofia Metacromática/fisiopatologia , Mutação/genética , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA