Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 191(10): 5124-38, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24101547

RESUMO

Evidence from C57BL/6 mice suggests that CD8(+) T cells, specific to the immunodominant HSV-1 glycoprotein B (gB) H-2(b)-restricted epitope (gB498-505), protect against ocular herpes infection and disease. However, the possible role of CD8(+) T cells, specific to HLA-restricted gB epitopes, in protective immunity seen in HSV-1-seropositive asymptomatic (ASYMP) healthy individuals (who have never had clinical herpes) remains to be determined. In this study, we used multiple prediction algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the HSV-1 gB amino acid sequence. Six of these epitopes exhibited high-affinity binding to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive, HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional CD8(+) T cell responses, as assessed by a combination of tetramer, IFN-γ-ELISPOT, CFSE proliferation, CD107a/b cytotoxic degranulation, and multiplex cytokine assays, were directed mainly against epitopes gB342-350 and gB561-569. In contrast, in 10 HLA-A*02:01-positive, HSV-1-seropositive symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent clinical herpes disease) frequent, but less robust, CD8(+) T cell responses were directed mainly against nonoverlapping epitopes (gB183-191 and gB441-449). ASYMP individuals had a significantly higher proportion of HSV-gB-specific CD8(+) T cells expressing CD107a/b degranulation marker and producing effector cytokines IL-2, IFN-γ, and TNF-α than did SYMP individuals. Moreover, immunization of a novel herpes-susceptible HLA-A*02:01 transgenic mouse model with ASYMP epitopes, but not with SYMP epitopes, induced strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. These findings should guide the development of a safe and effective T cell-based herpes vaccine.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Ceratite Herpética/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Idoso , Animais , Infecções Assintomáticas , Epitopos de Linfócito T/genética , Feminino , Antígeno HLA-A2/genética , Humanos , Imunização , Ceratite Herpética/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Simplexvirus/imunologia , Simplexvirus/metabolismo , Adulto Jovem
2.
Future Virol ; 7(4): 371-378, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22701511

RESUMO

Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as "asymptomatic" protective epitopes") could boost local and systemic "natural" protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging "asymptomatic" T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA