Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(7): 892-912, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38415360

RESUMO

BACKGROUND: Viral cardiac infection represents a significant clinical challenge encompassing several etiological agents, disease stages, complex presentation, and a resulting lack of mechanistic understanding. Myocarditis is a major cause of sudden cardiac death in young adults, where current knowledge in the field is dominated by later disease phases and pathological immune responses. However, little is known regarding how infection can acutely induce an arrhythmogenic substrate before significant immune responses. Adenovirus is a leading cause of myocarditis, but due to species specificity, models of infection are lacking, and it is not understood how adenoviral infection may underlie sudden cardiac arrest. Mouse adenovirus type-3 was previously reported as cardiotropic, yet it has not been utilized to understand the mechanisms of cardiac infection and pathology. METHODS: We have developed mouse adenovirus type-3 infection as a model to investigate acute cardiac infection and molecular alterations to the infected heart before an appreciable immune response or gross cardiomyopathy. RESULTS: Optical mapping of infected hearts exposes decreases in conduction velocity concomitant with increased Cx43Ser368 phosphorylation, a residue known to regulate gap junction function. Hearts from animals harboring a phospho-null mutation at Cx43Ser368 are protected against mouse adenovirus type-3-induced conduction velocity slowing. Additional to gap junction alterations, patch clamping of mouse adenovirus type-3-infected adult mouse ventricular cardiomyocytes reveals prolonged action potential duration as a result of decreased IK1 and IKs current density. Turning to human systems, we find human adenovirus type-5 increases phosphorylation of Cx43Ser368 and disrupts synchrony in human induced pluripotent stem cell-derived cardiomyocytes, indicating common mechanisms with our mouse whole heart and adult cardiomyocyte data. CONCLUSIONS: Together, these findings demonstrate that adenoviral infection creates an arrhythmogenic substrate through direct targeting of gap junction and ion channel function in the heart. Such alterations are known to precipitate arrhythmias and likely contribute to sudden cardiac death in acutely infected patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miocardite , Humanos , Camundongos , Animais , Conexina 43/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Miócitos Cardíacos/fisiologia , Junções Comunicantes , Adenoviridae/genética , Morte Súbita Cardíaca
2.
Circ Res ; 133(8): 658-673, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681314

RESUMO

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Assuntos
Conexina 43 , Dextranos , Animais , Cobaias , Dextranos/metabolismo , Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Junções Comunicantes/metabolismo , Albuminas/metabolismo , Manitol/farmacologia , Manitol/metabolismo , Potenciais de Ação
3.
J Mol Cell Cardiol ; 194: 32-45, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942073

RESUMO

Cardiac arrhythmia treatment is a clinical challenge necessitating safer and more effective therapies. Recent studies have highlighted the role of the perinexus, an intercalated disc nanodomain enriched in voltage-gated sodium channels including both Nav1.5 and ß1 subunits, adjacent to gap junctions. These findings offer insights into action potential conduction in the heart. A 19-amino acid SCN1B (ß1/ß1B) mimetic peptide, ßadp1, disrupts VGSC beta subunit-mediated adhesion in cardiac perinexii, inducing arrhythmogenic changes. We aimed to explore ßadp1's mechanism and develop novel SCN1B mimetic peptides affecting ß1-mediated adhesion. Using patch clamp assays in neonatal rat cardiomyocytes and electric cell substrate impedance sensing (ECIS) in ß1-expressing cells, we observed ßadp1 maintained inhibitory effects for up to 5 h. A shorter peptide (LQLEED) based on the carboxyl-terminus of ßadp1 mimicked this inhibitory effect, while dimeric peptides containing repeated LQLEED sequences paradoxically promoted intercellular adhesion over longer time courses. Moreover, we found a link between these peptides and ß1-regulated intramembrane proteolysis (RIP) - a signaling pathway effecting gene transcription including that of VGSC subunits. ßadp1 increased RIP continuously over 48 h, while dimeric agonists acutely boosted RIP for up to 6 h. In the presence of DAPT, an RIP inhibitor, ßadp1's effects on ECIS-measured intercellular adhesion was reduced, suggesting a relationship between RIP and the peptide's inhibitory action. In conclusion, novel SCN1B (ß1/ß1B) mimetic peptides are reported with the potential to modulate intercellular VGSC ß1-mediated adhesion, potentially through ß1 RIP. These findings suggest a path towards the development of anti-arrhythmic drugs targeting the perinexus.

4.
FASEB J ; 35(8): e21762, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246197

RESUMO

Phase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide alpha Connexin Carboxy-Terminus 1 (αCT1) improves cutaneous scar appearance by 47% 9-month postsurgery. While Cx43 and ZO-1 have been identified as molecular targets of αCT1, the mode-of-action of the peptide in scar mitigation at cellular and tissue levels remains to be further characterized. Scar histoarchitecture in αCT1 and vehicle-control treated skin wounds within the same patient were compared using biopsies from a Phase I clinical trial at 29-day postwounding. The sole effect on scar structure of a range of epidermal and dermal variables examined was that αCT1-treated scars had less alignment of collagen fibers relative to control wounds-a characteristic that resembles unwounded skin. The with-in subject effect of αCT1 on scar collagen order observed in Phase I testing in humans was recapitulated in Sprague-Dawley rats and the IAF hairless guinea pig. Transient increase in histologic collagen density in response to αCT1 was also observed in both animal models. Mouse NIH 3T3 fibroblasts and primary human dermal fibroblasts treated with αCT1 in vitro showed more rapid closure in scratch wound assays, with individual cells showing decreased directionality in movement. An agent-based computational model parameterized with fibroblast motility data predicted collagen alignments in simulated scars consistent with that observed experimentally in human and the animal models. In conclusion, αCT1 prompts decreased directionality of fibroblast movement and the generation of a 3D collagen matrix postwounding that is similar to unwounded skin-changes that correlate with long-term improvement in scar appearance.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cicatriz/metabolismo , Conexina 43/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Peptídeos/farmacologia , Animais , Cicatriz/patologia , Matriz Extracelular/metabolismo , Feminino , Cobaias , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Am J Physiol Heart Circ Physiol ; 321(6): H1042-H1055, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623182

RESUMO

Cardiac voltage-gated sodium channel gain-of-function prolongs repolarization in the long-QT syndrome type 3 (LQT3). Previous studies suggest that narrowing the perinexus within the intercalated disc, leading to rapid sodium depletion, attenuates LQT3-associated action potential duration (APD) prolongation. However, it remains unknown whether extracellular sodium concentration modulates APD prolongation during sodium channel gain-of-function. We hypothesized that elevated extracellular sodium concentration and widened perinexus synergistically prolong APD in LQT3. LQT3 was induced with sea anemone toxin (ATXII) in Langendorff-perfused guinea pig hearts (n = 34). Sodium concentration was increased from 145 to 160 mM. Perinexal expansion was induced with mannitol or the sodium channel ß1-subunit adhesion domain antagonist (ßadp1). Epicardial ventricular action potentials were optically mapped. Individual and combined effects of varying clefts and sodium concentrations were simulated in a computational model. With ATXII, both mannitol and ßadp1 significantly widened the perinexus and prolonged APD, respectively. The elevated sodium concentration alone significantly prolonged APD as well. Importantly, the combination of elevated sodium concentration and perinexal widening synergistically prolonged APD. Computational modeling results were consistent with animal experiments. Concurrently elevating extracellular sodium and increasing intercalated disc edema prolongs repolarization more than the individual interventions alone in LQT3. This synergistic effect suggests an important clinical implication that hypernatremia in the presence of cardiac edema can markedly increase LQT3-associated APD prolongation. Therefore, to our knowledge, this is the first study to provide evidence of a tractable and effective strategy to mitigate LQT3 phenotype by means of managing sodium levels and preventing cardiac edema in patients.NEW & NOTEWORTHY This is the first study to demonstrate that the long-QT syndrome type 3 (LQT3) phenotype can be exacerbated or concealed by regulating extracellular sodium concentrations and/or the intercalated disc separation. The animal experiments and computational modeling in the current study reveal a critically important clinical implication: sodium dysregulation in the presence of edema within the intercalated disc can markedly increase the risk of arrhythmia in LQT3. These findings strongly suggest that maintaining extracellular sodium within normal physiological limits may be an effective and inexpensive therapeutic option for patients with congenital or acquired sodium channel gain-of-function diseases.


Assuntos
Potenciais de Ação , Edema Cardíaco/complicações , Edema Cardíaco/metabolismo , Frequência Cardíaca , Hipernatremia/sangue , Hipernatremia/complicações , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/sangue , Animais , Venenos de Cnidários , Simulação por Computador , Modelos Animais de Doenças , Edema Cardíaco/patologia , Edema Cardíaco/fisiopatologia , Cobaias , Hipernatremia/fisiopatologia , Preparação de Coração Isolado , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/fisiopatologia , Masculino , Modelos Cardiovasculares , Miócitos Cardíacos/patologia
6.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804428

RESUMO

The mammalian ventricular myocardium forms a functional syncytium due to flow of electrical current mediated in part by gap junctions localized within intercalated disks. The connexin (Cx) subunit of gap junctions have direct and indirect roles in conduction of electrical impulse from the cardiac pacemaker via the cardiac conduction system (CCS) to working myocytes. Cx43 is the dominant isoform in these channels. We have studied the distribution of Cx43 junctions between the CCS and working myocytes in a transgenic mouse model, which had the His-Purkinje portion of the CCS labeled with green fluorescence protein. The highest number of such connections was found in a region about one-third of ventricular length above the apex, and it correlated with the peak proportion of Purkinje fibers (PFs) to the ventricular myocardium. At this location, on the septal surface of the left ventricle, the insulated left bundle branch split into the uninsulated network of PFs that continued to the free wall anteriorly and posteriorly. The second peak of PF abundance was present in the ventricular apex. Epicardial activation maps correspondingly placed the site of the first activation in the apical region, while some hearts presented more highly located breakthrough sites. Taken together, these results increase our understanding of the physiological pattern of ventricular activation and its morphological underpinning through detailed CCS anatomy and distribution of its gap junctional coupling to the working myocardium.


Assuntos
Comunicação Celular , Conexina 43/fisiologia , Junções Comunicantes/fisiologia , Ventrículos do Coração/patologia , Células Musculares/fisiologia , Pericárdio/fisiologia , Ramos Subendocárdicos/fisiologia , Animais , Feminino , Masculino , Camundongos , Células Musculares/citologia , Pericárdio/citologia , Ramos Subendocárdicos/citologia
7.
Am J Physiol Heart Circ Physiol ; 319(2): H396-H409, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32678707

RESUMO

Myocardial ischemia leads to conduction slowing, cell-to-cell uncoupling, and arrhythmias. We previously demonstrated that varying perfusate sodium (Na+) and calcium (Ca2+) attenuates conduction slowing and arrhythmias during simulated ischemia with continuous perfusion. Cardioprotection was selectively associated with widening of the perinexus, a gap junction adjacent nanodomain important to ephaptic coupling. It is unknown whether perfusate composition affects the perinexus or ischemic conduction during nonsimulated ischemia, when coronary flow is reduced or halted. We hypothesized that altering preischemic perfusate composition could facilitate perinexal expansion and attenuate conduction slowing during global ischemia. To test this hypothesis, ex vivo guinea pig hearts (n = 49) were Langendorff perfused with 145 or 153 mM Na+ and 1.25 or 2.0 mM Ca2+ and optically mapped during 30 min of no-flow ischemia. Altering Na+ and Ca2+ did not substantially affect baseline conduction. Increasing Na+ and decreasing Ca2+ both lowered pacing thresholds, whereas increasing Ca2+ narrowed perinexal width (Wp). A least squares mean estimate revealed that reduced perfusate Na+ and Ca2+ resulted in the most severe conduction slowing during ischemia. Increasing Na+ alone modestly attenuated conduction slowing, yet significantly delayed the median time to conduction block (10 to 16 min). Increasing both Na+ and Ca2+ selectively widened Wp during ischemia (22.7 vs. 15.7 nm) and attenuated conduction slowing to the greatest extent. Neither repolarization nor levels of total or phosphorylated connexin43 correlated with conduction slowing or block. Thus, perfusate-dependent widening of the perinexus preserved ischemic conduction and may be an adaptive response to ischemic stress.NEW & NOTEWORTHY Conduction slowing during acute ischemia creates an arrhythmogenic substrate. We have shown that extracellular ionic concentrations can alter conduction by modulating ephaptic coupling. Here, we demonstrate increased extracellular sodium and calcium significantly attenuate conduction slowing during no-flow ischemia. This effect was associated with selective widening of the perinexus, an intercalated disc nanodomain and putative cardiac ephapse. These findings suggest that acute changes in ephaptic coupling may serve as an adaptive response to ischemic stress.


Assuntos
Bradicardia/prevenção & controle , Cálcio/metabolismo , Bloqueio Cardíaco/prevenção & controle , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Isquemia Miocárdica/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Bradicardia/etiologia , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Circulação Coronária , Modelos Animais de Doenças , Cobaias , Bloqueio Cardíaco/etiologia , Bloqueio Cardíaco/metabolismo , Bloqueio Cardíaco/fisiopatologia , Preparação de Coração Isolado , Masculino , Isquemia Miocárdica/complicações , Isquemia Miocárdica/fisiopatologia , Transdução de Sinais , Fatores de Tempo
8.
FASEB J ; 33(9): 10453-10468, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31253057

RESUMO

Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.


Assuntos
Adesão Celular , Comunicação Celular , Movimento Celular , Conexina 43/metabolismo , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Animais , Antineoplásicos/farmacologia , Células Cultivadas , Junções Comunicantes , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Fenilbutiratos/farmacologia , Ratos , Ratos Sprague-Dawley
9.
Am J Physiol Heart Circ Physiol ; 316(4): H849-H861, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707595

RESUMO

We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.


Assuntos
Cálcio/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Junções Comunicantes/efeitos dos fármacos , Cobaias , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Técnicas In Vitro , Masculino , Concentração Osmolar
10.
Semin Cell Dev Biol ; 58: 41-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27234380

RESUMO

Myocardial infarction results in scar tissue that cannot actively contribute to heart mechanical function and frequently causes lethal arrhythmias. The healing response after infarction involves inflammation, biochemical signaling, changes in cellular phenotype, activity, and organization, and alterations in electrical conduction due to variations in cell and tissue geometry and alterations in protein expression, organization, and function - particularly in membrane channels. The intensive research focus on regeneration of myocardial tissues has, as of yet, only met with modest success, with no near-term prospect of improving standard-of-care for patients with heart disease. An alternative concept for novel therapeutic approach is the rejuvenation of cardiac electrical and mechanical properties through the modification of scar tissue. Several peptide therapeutics, locally applied genetic therapies, or delivery of genetically modified cells have shown promise in improving the characteristics of the fibrous scar and post-myocardial infarction prognosis in experimental models. This review highlights several factors that contribute to arrhythmogenesis in scar formation and how these might be targeted to regenerate some of the electrical and mechanical function of the post-MI scar.


Assuntos
Cicatriz/fisiopatologia , Coração/fisiopatologia , Terapia de Alvo Molecular , Regeneração/fisiologia , Animais , Cicatriz/patologia , Humanos
11.
Am J Physiol Heart Circ Physiol ; 314(4): H812-H838, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351451

RESUMO

Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article's corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.


Assuntos
Pesquisa Biomédica/normas , Cardiologia/normas , Infarto do Miocárdio , Isquemia Miocárdica , Publicações Periódicas como Assunto/normas , Fisiologia/normas , Animais , Células Cultivadas , Consenso , Confiabilidade dos Dados , Modelos Animais de Doenças , Preparação de Coração Isolado/normas , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Controle de Qualidade
12.
Int J Mol Sci ; 19(6)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914066

RESUMO

The most ubiquitous gap junction protein within the body, connexin 43 (Cx43), is a target of interest for modulating the dermal wound healing response. Observational studies found associations between Cx43 at the wound edge and poor healing response, and subsequent studies utilizing local knockdown of Cx43 found improvements in wound closure rate and final scar appearance. Further preclinical work conducted using Cx43-based peptide therapeutics, including alpha connexin carboxyl terminus 1 (αCT1), a peptide mimetic of the Cx43 carboxyl terminus, reported similar improvements in wound healing and scar formation. Clinical trials and further study into the mode of action have since been conducted on αCT1, and Phase III testing for treatment of diabetic foot ulcers is currently underway. Therapeutics targeting connexin activity show promise in beneficially modulating the human body's natural healing response for improved patient outcomes across a variety of injuries.


Assuntos
Cicatriz/metabolismo , Conexina 43/metabolismo , Pé Diabético/tratamento farmacológico , Pele/metabolismo , Animais , Cicatriz/tratamento farmacológico , Conexina 43/química , Conexina 43/genética , Pé Diabético/metabolismo , Humanos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Pele/efeitos dos fármacos
13.
Am J Physiol Cell Physiol ; 313(3): C314-C326, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701358

RESUMO

Connexin-based therapeutics have shown the potential for therapeutic efficacy in improving wound healing. Our previous work demonstrated that the connexin43 (Cx43) mimetic peptide juxtamembrane 2 (JM2) reduced the acute inflammatory response to a submuscular implant model by inhibiting purinergic signaling. Given the prospective application in improving tissue-engineered construct tolerance that these results indicated, we sought to determine the mechanism of action for JM2 in the present study. Using confocal microscopy, a gap-FRAP cell communication assay, and an ethidium bromide uptake assay of hemichannel function we found that the peptide reduced cell surface Cx43 levels, Cx43 gap junction (GJ) size, GJ communication, and hemichannel activity. JM2 is based on the sequence of the Cx43 microtubule binding domain, and microtubules have a confirmed role in intracellular trafficking of Cx43 vesicles. Therefore, we tested the effect of JM2 on Cx43-microtubule interaction and microtubule polymerization. We found that JM2 enhanced Cx43-microtubule interaction and that microtubule polymerization was significantly enhanced. Taken together, these data suggest that JM2 inhibits trafficking of Cx43 to the cell surface by promoting irrelevant microtubule polymerization and thereby reduces the number of hemichannels in the plasma membrane available to participate in proinflammatory purinergic signaling. Importantly, this work indicates that JM2 may have therapeutic value in the treatment of proliferative diseases such as cancer. We conclude that the targeted action of JM2 on Cx43 channels may improve the tolerance of implanted tissue-engineered constructs against the innate inflammatory response.


Assuntos
Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Conexina 43/imunologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/imunologia , Peptídeos/farmacologia , Conexina 43/antagonistas & inibidores , Células HeLa , Humanos , Peptídeos/síntese química , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/imunologia
14.
Zhonghua Yi Xue Za Zhi ; 97(34): 2691-2696, 2017 Sep 12.
Artigo em Zh | MEDLINE | ID: mdl-28910959

RESUMO

Objective: To establish and assess the feasibility and sensitivity of left ventricular elasticity, compliance and stiffness for study of ischemia/reperfusion injury in an isolated mouse heart model utilizing the pressure-volume curve framework. Methods: An isolated, balloon-in-ventricle, isovolumically contracting, crystalloid-perfused Langendorff heart preparation was set up from 15 male C57/6BL mice aged 12-14 weeks. End-systolic pressure-volume relationship (ESPVR) and end-diastolic pressure-volume relationship (EDPVR) were obtained by measuring left ventricular (LV) systolic pressure (LVSP) and diastolic pressure under different balloon volumes. End-systolic elasticity (E(es)), end-diastolic stiffness (S(ed)) and compliance (C(ed)) were calculated from the slope of ESPVR and EDPVR. Measurements of LVSP, developed pressure (LVDP), end of diastolic pressure (EDP), the rate of pressure development dp/dt(max) and dp/dt(min) were monitored during 30 min stabilization, 20 min global ischemia and 40 min reperfusion. The reliability and coefficient of variation (CV) of these parameters were compared with E(es) and C(ed). Results: During stabilization, the heart rate was (395±40) bpm, LVDP was (126±25) mmHg, + dp/dt(max) was (5 590±625) mmHg/s, -dp/dt(min) was (-4 128±625) mmHg/s, E(es) was 5.7±0.3, C(ed) was 0.7±0.2, S(ed) was 1.4±0.1. Ischemia/reperfusion injury resulted in significant decrease in contractile function parameters. The recovery level of LVSP, LVDP, dp/dt(max) and dp/dt(min) were (57±19)%, (23±6)%, (23±7)% and (21±5)% (all P<0.001), respectively. The EDP increased to (5.4±2.0) times than the baseline after ischemia/reperfusion injury. The E(es) and C(ed) was deceased to (42±2)% and (33±2)%, compared with baseline. The stiffness was increased up to (3.1±0.2) times higher than the baseline. The CV of E(es,)S(ed) and C(ed) were lower than LVSP, LVDP, EDP, dp/dt(max,)dp/dt(min,)while the reliability of E(es), S(ed) and C(ed) were higher than the classic contractile function parameters. Conclusion: Pressure-volume curves are feasible during ischemia/reperfusion injury in the isolated mouse heart model with acceptable reliability and sensitivity.


Assuntos
Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Pressão Sanguínea , Diástole , Frequência Cardíaca , Masculino , Camundongos , Reprodutibilidade dos Testes
15.
Am J Physiol Cell Physiol ; 309(9): C600-7, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26289751

RESUMO

Endothelial cell migration is a fundamental process during angiogenesis and, therefore, a point of intervention for therapeutic strategies aimed at controlling pathologies involving blood vessel growth. We sought to determine the role of the gap junction protein connexin 43 (Cx43) in key features of angiogenesis in the central nervous system. We used an in vitro model to test the hypothesis that a complex of interacting proteins, including Cx43 and zonula occludens-1 (ZO-1), regulates the migratory behavior of cerebral endothelium. With knockdown and overexpression experiments, we demonstrate that the rate of healing following scrape-wounding of endothelium is regulated by the level of Cx43 protein expression. The effects on cell motility and proliferation were independent of gap junction communication as cells were sensitive to altered Cx43 expression in single plated cells. Coupling of Cx43/ZO-1 critically regulates this process as demonstrated with the use of a Cx43 α-carboxy terminus 1 peptide mimetic (αCT1) and overexpression of a mutant ZO-1 with the Cx43-binding PDZ2 domain deleted. Disrupting the Cx43/ZO-1 complex with these treatments resulted in collapse of the organized F-actin cytoskeleton and the appearance of actin nodes. Preincubation with the myosin 2 inhibitors blebbistatin or Y-27632 disrupted the Cx43/ZO-1 complex and inhibited cell spreading at the leading edge of migration. Cells studied individually in time-lapse open field locomotion assays wandered less when Cx43/ZO-1 interaction was disrupted without significant change in speed, suggesting that faster wound healing is a product of linearized migration. In contrast to the breakdown of F-actin architecture, microtubule architecture was not obviously affected by treatments. This study provides new insight into the fundamental regulatory mechanisms of cerebral endothelial cell locomotion. Cx43 tethers the F-actin cytoskeleton through a ZO-1 linker and supports cell spreading and exploration during locomotion. Here, we demonstrate that releasing this actin-coupled tether shifts the balance of directional migration control to a more linear movement that enhances the rate of wound healing.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Encéfalo/irrigação sanguínea , Movimento Celular , Forma Celular , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Sítios de Ligação , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Forma Celular/efeitos dos fármacos , Células Cultivadas , Conexina 43/genética , Células Endoteliais/efeitos dos fármacos , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Transfecção , Cicatrização
16.
Pflugers Arch ; 467(10): 2093-105, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25578859

RESUMO

It has long been held that electrical excitation spreads from cell-to-cell in the heart via low resistance gap junctions (GJ). However, it has also been proposed that myocytes could interact by non-GJ-mediated "ephaptic" mechanisms, facilitating propagation of action potentials in tandem with direct GJ-mediated coupling. We sought evidence that such mechanisms contribute to cardiac conduction. Using super-resolution microscopy, we demonstrate that Nav1.5 is localized within 200 nm of the GJ plaque (a region termed the perinexus). Electron microscopy revealed close apposition of adjacent cell membranes within perinexi suggesting that perinexal sodium channels could function as an ephapse, enabling ephaptic cell-to-cell transfer of electrical excitation. Acute interstitial edema (AIE) increased intermembrane distance at the perinexus and was associated with preferential transverse conduction slowing and increased spontaneous arrhythmia incidence. Inhibiting sodium channels with 0.5 µM flecainide uniformly slowed conduction, but sodium channel inhibition during AIE slowed conduction anisotropically and increased arrhythmia incidence more than AIE alone. Sodium channel inhibition during GJ uncoupling with 25 µM carbenoxolone slowed conduction anisotropically and was also highly proarrhythmic. A computational model of discretized extracellular microdomains (including ephaptic coupling) revealed that conduction trends associated with altered perinexal width, sodium channel conductance, and GJ coupling can be predicted when sodium channel density in the intercalated disk is relatively high. We provide evidence that cardiac conduction depends on a mathematically predicted ephaptic mode of coupling as well as GJ coupling. These data suggest opportunities for novel anti-arrhythmic therapies targeting noncanonical conduction pathways in the heart.


Assuntos
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/patologia , Edema/metabolismo , Edema/patologia , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Cobaias , Masculino , Modelos Neurológicos , Miocárdio/ultraestrutura
17.
Pflugers Arch ; 467(11): 2287-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25771952

RESUMO

UNLABELLED: Several studies have disagreed on measurements of cardiac conduction velocity (CV) in mice with a heterozygous knockout of the connexin gene Gja1--a mutation that reduces the gap junction (GJ) protein, Connexin43 (Cx43), by 50 %. We noted that perfusate ionic composition varied between studies and hypothesized that extracellular ionic concentration modulates CV dependence on GJs. CV was measured by optically mapping wild-type (WT) and heterozygous null (HZ) hearts serially perfused with solutions previously associated with no change (Solution 1) or CV slowing (Solution 2). In WT hearts, CV was similar for Solutions 1 and 2. However, consistent with the hypothesis, Solution 2 in HZ hearts slowed transverse CV (CVT) relative to Solution 1. Previously, we showed CV slowing in a manner consistent with ephaptic conduction correlated with increased perinexal inter-membrane width (W P) at GJ edges. Thus, W P was measured following perfusion with systematically adjusted [Na(+)]o and [K(+)]o in Solutions 1 and 2. A wider W P was associated with reduced CVT in WT and HZ hearts, with the greatest effect in HZ hearts. Increasing [Na(+)]o increased CVT only in HZ hearts. Increasing [K(+)]o slowed CVT in both WT and HZ hearts with large W P but only in HZ hearts with narrow W P. CONCLUSION: When perinexi are wide, decreasing excitability by modulating [Na(+)]o and [K(+)]o increases CV sensitivity to reduced Cx43. By contrast, CV is less sensitive to Cx43 and ion composition when perinexi are narrow. These results are consistent with cardiac conduction dependence on both GJ and non-GJ (ephaptic) mechanisms.


Assuntos
Conexina 43/genética , Conexina 43/fisiologia , Sistema de Condução Cardíaco/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Sistema de Condução Cardíaco/fisiologia , Heterozigoto , Técnicas In Vitro , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Potássio/farmacologia , Potássio/fisiologia , Sódio/farmacologia , Sódio/fisiologia
18.
Wound Repair Regen ; 23(2): 203-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25703647

RESUMO

Nonhealing neuropathic foot ulcers remain a significant problem in individuals with diabetes. The gap-junctional protein connexin43 (Cx43) has roles in dermal wound healing and targeting Cx43 signalling accelerates wound reepithelialization. In a prospective, randomized, multicenter clinical trial we evaluated the efficacy and safety of a peptide mimetic of the C-terminus of Cx43, alpha connexin carboxy-terminal (ACT1), in accelerating the healing of chronic diabetic foot ulcers (DFUs) when incorporated into standard of care (SOC) protocols. Adults with DFUs of at least four weeks duration were randomized to receive SOC with or without topical application of ACT1. Primary outcome was mean percent ulcer reepithelialization and safety variables included incidence of treatment related adverse events (AEs) and detection of ACT1 immunogenicity. ACT1 treatment was associated with a significantly greater reduction in mean percent ulcer area from baseline to 12 weeks (72.1% vs. 57.1%; p = 0.03). Analysis of incidence and median time-to-complete-ulcer closure revealed that ACT1 treatment was associated with a greater percentage of participants that reached 100% ulcer reepitheliazation and a reduced median time-to-complete-ulcer closure. No AEs reported were treatment related, and ACT1 was not immunogenic. Treatment protocols that incorporate ACT1 may present a therapeutic strategy that safely augments the reepithelialization of chronic DFUs.


Assuntos
Anti-Infecciosos/administração & dosagem , Conexina 43/administração & dosagem , Conexina 43/farmacologia , Pé Diabético/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/administração & dosagem , Cicatrização/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Administração Tópica , Anti-Infecciosos/farmacologia , Pé Diabético/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos , Estudos Prospectivos , Infecção da Ferida Cirúrgica/patologia , Resultado do Tratamento , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/farmacologia
19.
J Mol Cell Cardiol ; 70: 37-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24412581

RESUMO

Heterocellular electrotonic coupling between cardiac myocytes and non-excitable connective tissue cells has been a long-established and well-researched fact in vitro. Whether or not such coupling exists in vivo has been a matter of considerable debate. This paper reviews the development of experimental insight and conceptual views on this topic, describes evidence in favour of and against the presence of such coupling in native myocardium, and identifies directions for further study needed to resolve the riddle, perhaps less so in terms of principal presence which has been demonstrated, but undoubtedly in terms of extent, regulation, patho-physiological context, and actual relevance of cardiac myocyte-non-myocyte coupling in vivo. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."


Assuntos
Acoplamento Excitação-Contração/fisiologia , Fibroblastos/citologia , Sistema de Condução Cardíaco/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Comunicação Celular/fisiologia , Conexinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose/patologia , Fibrose/fisiopatologia , Junções Comunicantes/fisiologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Mecanotransdução Celular , Potenciais da Membrana/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
20.
Am J Physiol Heart Circ Physiol ; 306(5): H619-27, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24414064

RESUMO

Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract in synchrony. Defects in conduction disrupt synchronous activation and are associated with life-threatening arrhythmias in many pathologies. Therefore, it is scarcely surprising that this phenomenon continues to be the subject of active scientific inquiry. Here we provide a brief review of how the conceptual understanding of conduction has evolved over the last century and highlight recent, potentially paradigm-shifting developments.


Assuntos
Arritmias Cardíacas/história , Acoplamento Excitação-Contração , Sistema de Condução Cardíaco , Contração Miocárdica , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , História do Século XX , História do Século XXI , Humanos , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA