Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Small ; : e2403277, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046063

RESUMO

Group-14 Xenes beyond graphene such as silicene, germanene, and stanene have recently gained a lot of attention for their peculiar electronic properties, which can be tuned by covalent functionalization. Up until now, reported methods for the top-down synthesis of covalently functionalized silicene and germanene typically yield multilayered flakes with a minimum thickness of 100 nm. Herein, the ex situ covalent functionalization of germanene (fGe) is reported via 1,3-dipolar cycloaddition of the azomethine ylide generated by the decarboxylative condensation of 3,4-dihydroxybenzaldehyde and sarcosine. Amorphous few-layered sheets (average thickness of ≈6 nm) of dipolarophile germanene (GeX) are produced by thermal dehydrogenation of its fully saturated parent precursor, germanane (GeH). Spectroscopic evidence confirmed the emergence of the dipolarophilic sp2 domains due to the dehydrogenation of germanane, and their sp3 hybridization due to the covalent functionalization of germanene. Elemental mapping of the functionalized germanene revealed flakes with a very high abundance of carbon uniformly covering the germanium backbone. The 500 meV increase of the optical bandgap of germanene observed upon functionalization paves the way toward bandgap engineering of other group-14 Xenes, which could potentially be a major turning point in the fields of electronics, electrocatalysis, and photocatalysis.

2.
Molecules ; 29(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203045

RESUMO

Porous carbon materials from food waste have gained growing interest worldwide for multiple applications due to their natural abundance and the sustainability of the raw materials and the cost-effective synthetic processing. Herein, orange waste-derived porous carbon (OWPC) was developed through a freeze-drying method to prevent the demolition of the original biomass structure and then was pyrolyzed to create a large number of micro, meso and macro pores. The novelty of this work lies in the fact of using the macro-channels of the orange waste in order to create a macroporous network via the freeze-drying method which remains after the pyrolysis steps and creates space for the development of different types of porous in the micro and meso scale in a controlled way. The results showed the successful preparation of a porous carbon material with a high specific surface area of 644 m2 g-1 without any physical or chemical activation. The material's cytocompatibility was also investigated against a fibroblast cell line (NIH/3T3 cells). OWPC triggered a mild intracellular reactive oxygen species production without initiating apoptosis or severely affecting cell proliferation and survival. The combination of their physicochemical characteristics and high cytocompatibility renders them promising materials for further use in biomedical and pharmaceutical applications.


Assuntos
Carbono , Citrus sinensis , Liofilização , Carbono/química , Porosidade , Camundongos , Animais , Células NIH 3T3 , Citrus sinensis/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Resíduos
3.
Chemistry ; 29(59): e202301720, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515521

RESUMO

In this article, the enrichment of graphene and graphene oxide with free radicals through their functionalization with tyrosine is studied. In contrast with what is commonly observed in the functionalization of graphene with organic species the addition of tyrosine radicals on to the graphene substrate led to a remarkable increase of the aromatic character as indicated by the spectroscopic data. Similar behaviour was observed for the functionalization of graphene oxide. In addition, a brief analysis of the tyrosine functionalized graphene with EPR spectroscopy showed a remarkable enhancement of the spin density that could be useful in spintronics.

4.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805728

RESUMO

Hypergolic systems rely on organic fuel and a powerful oxidizer that spontaneously ignites upon contact without any external ignition source. Although their main utilization pertains to rocket fuels and propellants, it is only recently that hypergolics has been established from our group as a new general method for the synthesis of different morphologies of carbon nanostructures depending on the hypergolic pair (organic fuel-oxidizer). In search of new pairs, the hypergolic mixture described here contains polyaniline as the organic source of carbon and fuming nitric acid as strong oxidizer. Specifically, the two reagents react rapidly and spontaneously upon contact at ambient conditions to afford carbon nanosheets. Further liquid-phase exfoliation of the nanosheets in dimethylformamide results in dispersed single layers exhibiting strong Tyndall effect. The method can be extended to other conductive polymers, such as polythiophene and polypyrrole, leading to the formation of different type carbon nanostructures (e.g., photolumincent carbon dots). Apart from being a new synthesis pathway towards carbon nanomaterials and a new type of reaction for conductive polymers, the present hypergolic pairs also provide a novel set of rocket bipropellants based on conductive polymers.

5.
Angew Chem Int Ed Engl ; 60(1): 360-365, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32866319

RESUMO

Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a ß-CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg ) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.

6.
Langmuir ; 36(16): 4261-4271, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32243167

RESUMO

The self-assembly and the dynamics of an H-shaped copolymer composed of a polyethylene midblock and four poly(ethylene oxide) arms (PE-b-4PEO) are investigated in the bulk and under severe confinement into nanometer-spaced LAPONITE clay particles by means of small- and wide-angle X-ray diffraction (SAXS, WAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), rheology, and dielectric spectroscopy (DS). Because of the H-shaped architecture, the PE midblock is topologically frustrated and thus unable to crystallize. The superstructure formation in the bulk is dictated solely by the PEO arms as inferred by the crystallization/melting temperature relative to the PEO homopolymer. Confinement produced remarkable changes in the interlayer distance and PEO crystallinity but left the local segmental dynamics unaltered. To reconcile all structural, thermodynamic, and dynamic effects, a novel morphological picture is proposed with interest in emulsions. Key parameters that stabilize the final morphology are the severe chain confinement with the associated entropy loss and the presence of interactions (hydrophobic/hydrophilic) between the LAPONITE and the PEO/PE blocks.

7.
Nano Lett ; 19(3): 1520-1526, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30674194

RESUMO

Similar to carbon, germanium exists in various structures such as three-dimensional crystalline germanium and germanene, a two-dimensional germanium atomic layer. Regarding the electronic properties, they are either semiconductors or Dirac semimetals. Here, we report a highly conductive metallic state in thermally annealed germanane (hydrogen-terminated germanene, GeH), which shows a resistivity of ∼10-7 Ω·m that is orders of magnitude lower than any other allotrope of germanium. By comparing the resistivity, Raman spectra, and thickness change measured by AFM, we suggest the highly conductive metallic state is associated with the dehydrogenation during heating, which likely transforms germanane thin flakes to multilayer germanene. In addition, weak antilocalization is observed, serving as solid evidence for strong spin-orbit interaction (SOI) in germanane/germanene. Our study opens a possible new route to investigate the electrical transport properties of germanane/germanene, and the large SOI might provide the essential ingredients to access their topological states predicted theoretically.

8.
Molecules ; 25(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940837

RESUMO

We exploited a classic chemistry demonstration experiment based on the reaction of acetylene with chlorine to obtain highly crystalline graphite at ambient conditions. Acetylene and chlorine were generated in-situ by the addition of calcium carbide (CaC2) in a concentrated HCl solution, followed by the quick addition of domestic bleach (NaClO). The released gases reacted spontaneously, giving bursts of yellow flame, leaving highly crystalline graphite deposits in the aqueous phase. This was a rather benign alternative towards synthetic graphite, the latter usually being prepared at high temperatures. The synthetic graphite was further utilized to obtain graphene or conductive inks.


Assuntos
Acetileno/química , Cloro/química , Grafite/síntese química , Cristalização , Grafite/química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Análise Espectral Raman , Difração de Raios X
9.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397274

RESUMO

Recently we have highlighted the importance of hypergolic reactions in carbon materials synthesis. In an effort to expand this topic with additional new paradigms, herein we present novel preparations of carbon nanomaterials, such-like carbon nanosheets and fullerols (hydroxylated fullerenes), through spontaneous ignition of coffee-sodium peroxide (Na2O2) and C60-Na2O2 hypergolic mixtures, respectively. In these cases, coffee and fullerenes played the role of the combustible fuel, whereas sodium peroxide the role of the strong oxidizer (e.g., source of highly concentrated H2O2). The involved reactions are both thermodynamically and kinetically favoured, thus allowing rapid product formation at ambient conditions. In addition, we provide tips on how to exploit the released energy of such highly exothermic reactions in the generation of useful work.


Assuntos
Fulerenos/química , Oxirredução , Peróxidos/química
10.
Sensors (Basel) ; 16(3): 287, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927109

RESUMO

Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications.


Assuntos
Técnicas Biossensoriais/métodos , Lacase/química , Nanopartículas/química , Oxirredução , Enzimas/química , Grafite/química , Óxidos/química
11.
Langmuir ; 31(38): 10508-16, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26280685

RESUMO

A graphene oxide-gallic acid hybrid material was synthesized by the immobilization of gallic acid (3,4,5-trihydroxobenzoic acid) on graphene oxide. The grafting was achieved via the formation of amide bonds between the amine groups on the organofunctionalized graphite oxide surface and the carboxyl groups of the gallic acid molecules. The EPR signal of the gallic acid radicals in this hybrid material remained almost unaltered over at least 500 days, with less than 3% signal decay over that period, pointing to the truly remarkable stability of these radicals. The produced material was characterized by Fourier transform infrared, X-ray photoelectron, and electron paramagnetic resonance spectroscopies as well as by thermogravimetric analysis and the Kaiser test. The stability of the radicals in the material was studied in powder form and in aqueous solution vs pH. We demonstrate that in the graphene oxide-gallic acid hybrid material a radical is favorably stabilized on the ring-O while the oxidation of the second OH is precluded, and this results in long-term stabilization of the gallic acid radicals in solid hybrid material. Thus, in applications where it will be used under O2-free and humidity-free conditions, the graphene oxide-gallic acid hybrid material is a reliable spintronics scaffold.

12.
Nanoscale Adv ; 6(11): 2860-2874, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817436

RESUMO

Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.

13.
Nanoscale ; 16(33): 15770-15781, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39113556

RESUMO

Hydrogen is a promising alternative fuel that can push forward the energy transition because of its high energy density (142 MJ kg-1), variety of potential sources, low weight and low environmental impact, but its storage for automotive applications remains a formidable challenge. MgH2, with its high gravimetric and volumetric density, presents a compelling platform for hydrogen storage; however, its utilization is hindered by the sluggish kinetics of hydrogen uptake/release and high temperature operation. Herein we show that a novel layered heterostructure of reduced graphene oxide and organosilica with high specific surface area and narrow pore size distribution can serve as a scaffold to host MgH2 nanoparticles with a narrow diameter distribution around ∼2.5 nm and superior hydrogen storage properties to bulk MgH2. Desorption studies showed that hydrogen release starts at relatively low temperature, with a maximum at 348 °C and kinetics dependent on particle size. Reversibility tests demonstrated that the dehydrogenation kinetics and re-hydrogenation capacity of the system remains stable at 1.62 wt% over four cycles at 200 °C. Our results prove that MgH2 confinement in a nanoporous scaffold is an efficient way to constrain the size of the hydride particles, avoid aggregation and improve kinetics for hydrogen release and recharging.

14.
Chemistry ; 19(38): 12884-91, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23934746

RESUMO

The hydroxyphenyl derivatives of carbon nanostructures (graphene and carbon nanotubes) can be easily transformed into highly organophilic or hydrophilic derivatives by using the ionic interactions between the phenolic groups and oleylamine or tetramethylammonium hydroxide, respectively. The products were finely dispersed in homo-polymers or block co-polymers to create homogeneous carbon-based nanocomposites and were used as nanocarriers for the dispersion and protection of strongly hydrophobic compounds, such as large aromatic chromophores or anticancer drugs in aqueous solutions.

15.
Chemistry ; 19(24): 7937-43, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23589152

RESUMO

In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO3)3 solution to replace the surfactant molecules with Al(3+) ions) or thermal treatment (heating at 350 °C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorption-desorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.

16.
Biomolecules ; 13(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37189390

RESUMO

In the field of biocatalysis, the implementation of sustainable processes such as enzyme immobilization or employment of environmentally friendly solvents, like Deep Eutectic Solvents (DESs) are of paramount importance. In this work, tyrosinase was extracted from fresh mushrooms and used in a carrier-free immobilization towards the preparation of both non-magnetic and magnetic cross-linked enzyme aggregates (CLEAs). The prepared biocatalyst was characterized and the biocatalytic and structural traits of free tyrosinase and tyrosinase magnetic CLEAs (mCLEAs) were evaluated in numerous DES aqueous solutions. The results showed that the nature and the concentration of the DESs used as co-solvents significantly affected the catalytic activity and stability of tyrosinase, while the immobilization enhanced the activity of the enzyme in comparison with the non-immobilized enzyme up to 3.6-fold. The biocatalyst retained the 100% of its initial activity after storage at -20 °C for 1 year and the 90% of its activity after 5 repeated cycles. Tyrosinase mCLEAs were further applied in the homogeneous modification of chitosan with caffeic acid in the presence of DES. The biocatalyst demonstrated great ability in the functionalization of chitosan with caffeic acid in the presence of 10% v/v DES [Bet:Gly (1:3)], enhancing the antioxidant activity of the films.


Assuntos
Quitosana , Monofenol Mono-Oxigenase , Solventes/química , Solventes Eutéticos Profundos , Biocatálise , Enzimas Imobilizadas/química , Água , Estabilidade Enzimática
17.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986854

RESUMO

Graphene has been studied thoroughly for its use in biomedical applications over the last decades. A crucial factor for a material to be used in such applications is its biocompatibility. Various factors affect the biocompatibility and toxicity of graphene structures, including lateral size, number of layers, surface functionalization, and way of production. In this work, we tested that the green production of few-layer bio-graphene (bG) enhances its biocompatibility compared to chemical-graphene (cG). When tested against three different cell lines in terms of MTT assays, both materials proved to be well-tolerated at a wide range of doses. However, high doses of cG induce long-term toxicity and have a tendency for apoptosis. Neither bG nor cG induced ROS generation or cell cycle modifications. Finally, both materials affect the expression of inflammatory proteins such as Nrf2, NF-kB and HO-1 but further research is required for a safe result. In conclusion, although there is little to choose between bG and cG, bG's sustainable way of production makes it a much more attractive and promising candidate for biomedical applications.

18.
J Funct Biomater ; 14(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888179

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have garnered significant attention in the medical sector due to their exceptional superparamagnetic properties and reliable tracking capabilities. In this study, we investigated the immunotoxicity of SPIONs with a modified surface to enhance hydrophilicity and prevent aggregate formation. The synthesized SPIONs exhibited a remarkably small size (~4 nm) and underwent surface modification using a novel "haircut" reaction strategy. Experiments were conducted in vitro using a human monocytic cell line (THP-1). SPIONs induced dose-dependent toxicity to THP-1 cells, potentially by generating ROS and initiating the apoptotic pathway in the cells. Concentrations up to 10 µg/mL did not affect the expression of Nrf2, HO-1, NF-κB, or TLR-4 proteins. The results of the present study demonstrated that highly hydrophilic SPIONs were highly toxic to immune cells; however, they did not activate pathways of inflammation and immune response. Further investigation into the mechanisms of cytotoxicity is warranted to develop a synthetic approach for producing effective, highly hydrophilic SPIONs with little to no side effects.

19.
Exp Biol Med (Maywood) ; 248(1): 14-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408556

RESUMO

Diabetes mellitus' (DM) prevalence worldwide is estimated to be around 10% and is expected to rise over the next decades. Monitoring blood glucose levels aims to determine whether glucose targets are met to minimize the risk for the development of symptoms related to high or low blood sugar and avoid long-term diabetes complications. Continuous glucose monitoring (CGMs) systems emerged almost two decades ago and have revolutionized the way diabetes is managed. Especially in Type 1 DM, the combination of a CGM with an insulin pump (known as a closed-loop system or artificial pancreas) allows an autonomous regulation of patients' insulin with minimal intervention from the user. However, there is still an unmet need for high accuracy, precision and repeatability of CGMs. Graphene was isolated in 2004 and found immediately fertile ground in various biomedical applications and devices due to its unique combination of properties including its high electrical conductivity. In the last decade, various graphene family nanomaterials have been exploited for the development of enzymatic and non-enzymatic biosensors to determine glucose in biological fluids, such as blood, sweat, and so on. Although great progress has been achieved in the field, several issues need to be addressed for graphene sensors to become a predominant material in the new era of CGMs.


Assuntos
Diabetes Mellitus Tipo 1 , Grafite , Humanos , Glicemia , Hipoglicemiantes , Automonitorização da Glicemia , Insulina , Glucose
20.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839082

RESUMO

Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA