Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 13: 801672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299660

RESUMO

Ocean warming has been a major driver of coral reef bleaching and mass mortality. Coupled to other biotic pressures, corals' ability for acclimatization and adaptation may become compromised. Here, we tested the combined effects of warming scenarios (26, 30, and 32°C) and predation (wound vs. no wound) in coral health condition (paleness, bleaching, and mortality), cellular stress responses (heat shock protein 70 kDa Hsp70, total ubiquitin Ub, and total antioxidant capacity TAC), and physiological state (integrated biomarker response index, IBR) of seven Scleractinian coral species, after being exposed for 60 days. Results show that although temperature was the main factor driving coral health condition, thermotolerant species (Galaxea fascicularis, Psammocora contigua, and Turbinaria reniformis) displayed increased paleness, bleaching, and mortality in predation treatments at high temperature, whereas thermosensitive species (Acropora tenuis, Echinopora lamellosa, and Montipora capricornis brown and green morphotypes) all died at 32°C, regardless of predation condition. At the molecular level, results show that there were significant main and interactive effects of species, temperature, and predation in the biomarkers assessed. Temperature affected Hsp70, Ub, and TAC, evidencing the role of protein folding and turnover, as well as reactive oxygen species scavenging in heat stress management. Predation increased Hsp70 and Ub, suggesting the activation of the pro-phenoloxidase system and cytokine activity, whereas the combination of both stressors mainly affected TAC during moderate stress and Ub under severe stress, suggesting that redox balance and defense of homeostasis are crucial in tissue repair at high temperature. IBR levels showed an increasing trend at 32°C in predated coral fragments (although non-significant). We conclude that coral responses to the combination of high temperature and predation pressure display high inter-species variability, but these stressors may pose a higher risk of endosymbiont loss, depending on species physiology and stress intensity.

2.
Mar Environ Res ; 150: 104758, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31301459

RESUMO

Global warming is leading to increases in tropical storms' frequency and intensity, allowing fragmentation of reef-forming coral species, but also to coral bleaching and mortality. The first level of organism's response to an environmental perturbation occurs at the cellular level. This study investigated the long-term oxidative stress on fragments of nine Indo-Pacific reef-forming coral species exposed for 60 days to increasing temperatures (30 °C and 32 °C) and compared results with control temperature (26 °C). Coral overall condition (appearance), lipid peroxidation (LPO), catalase activity (CAT), and glutathione S-transferase (GST) were assessed. The species Turbinaria reniformis, Galaxea fascicularis, and Psammocora contigua were the most resistant to heat stress, presenting no oxidative damage at 30 °C. Unlike G. fasciularis, both T. reniformis and P. contigua showed no evidence of oxidative damage at 32 °C. All remaining species' fragments died at 32 °C. Stylophora pistillata and Pocillopora damicornis were the most susceptible species to heat stress, not resisting at 30 °C.


Assuntos
Antozoários , Recifes de Corais , Estresse Oxidativo , Animais , Antozoários/fisiologia , Resposta ao Choque Térmico , Peroxidação de Lipídeos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA