Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 584(7822): 579-583, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760001

RESUMO

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Assuntos
Biodiversidade , Classificação/métodos , Ilhas , Plantas/classificação , Mapeamento Geográfico , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Internet , Nova Guiné , Especificidade da Espécie , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 119(27): e2120662119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35767644

RESUMO

Species richness varies immensely around the world. Variation in the rate of diversification (speciation minus extinction) is often hypothesized to explain this pattern, while alternative explanations invoke time or ecological carrying capacities as drivers. Focusing on seed plants, the world's most important engineers of terrestrial ecosystems, we investigated the role of diversification rate as a link between the environment and global species richness patterns. Applying structural equation modeling to a comprehensive distribution dataset and phylogenetic tree covering all circa 332,000 seed plant species and 99.9% of the world's terrestrial surface (excluding Antarctica), we test five broad hypotheses postulating that diversification serves as a mechanistic link between species richness and climate, climatic stability, seasonality, environmental heterogeneity, or the distribution of biomes. Our results show that the global patterns of species richness and diversification rate are entirely independent. Diversification rates were not highest in warm and wet climates, running counter to the Metabolic Theory of Ecology, one of the dominant explanations for global gradients in species richness. Instead, diversification rates were highest in edaphically diverse, dry areas that have experienced climate change during the Neogene. Meanwhile, we confirmed climate and environmental heterogeneity as the main drivers of species richness, but these effects did not involve diversification rates as a mechanistic link, calling for alternative explanations. We conclude that high species richness is likely driven by the antiquity of wet tropical areas (supporting the "tropical conservatism hypothesis") or the high ecological carrying capacity of warm, wet, and/or environmentally heterogeneous environments.


Assuntos
Extinção Biológica , Especiação Genética , Plantas , Biodiversidade , Clima , Conjuntos de Dados como Assunto , Ecossistema , Filogenia , Plantas/classificação , Plantas/genética
3.
New Phytol ; 240(4): 1636-1646, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37496281

RESUMO

Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods. Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called 'hotspots') do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD. Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub-)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential. Safeguarding PD in the Anthropocene (including the protection of some comparatively species-poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Filogenia , Conservação dos Recursos Naturais/métodos , Plantas , Ecossistema
4.
New Phytol ; 240(4): 1355-1365, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37289204

RESUMO

The World Checklist of Vascular Plants (WCVP) is an extremely valuable resource that is being used to address many fundamental and applied questions in plant science, conservation, ecology and evolution. However, databases of this size require data manipulation skills that pose a barrier to many potential users. Here, we present rWCVP, an open-source R package that aims to facilitate the use of the WCVP by providing clear, intuitive functions to execute many common tasks. These functions include taxonomic name reconciliation, geospatial integration, mapping and generation of multiple different summaries of the WCVP in both data and report format. We have included extensive documentation and tutorials, providing step-by-step guides that are accessible even to users with minimal programming experience. rWCVP is available on cran and GitHub.


Assuntos
Software , Traqueófitas , Lista de Checagem , Plantas , Bases de Dados Factuais
5.
New Phytol ; 240(4): 1687-1702, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37243532

RESUMO

Taxonomic checklists used to verify published plant names and identify synonyms are a cornerstone of biological research. Four global authoritative checklists for vascular plants exist: Leipzig Catalogue of Vascular Plants, World Checklist of Vascular Plants, World Flora Online (successor of The Plant List, TPL), and WorldPlants. We compared these four checklists in terms of size and differences across taxa. We matched taxon names of these checklists and TPL against each other, identified differences across checklists, and evaluated the consistency of accepted names linked to individual taxon names. We assessed geographic and phylogenetic patterns of variance. All checklists differed strongly compared with TPL and provided identical information on c. 60% of plant names. Geographically, differences in checklists increased from low to high latitudes. Phylogenetically, we detected strong variability across families. A comparison of name-matching performance on taxon names submitted to the functional trait database TRY, and a check of completeness of accepted names evaluated against an independent, expert-curated checklist of the family Meliaceae, showed a similar performance across checklists. This study raises awareness on the differences in data and approach across these checklists potentially impacting analyses. We propose ideas on the way forward exploring synergies and harmonizing the four global checklists.


Assuntos
Lista de Checagem , Traqueófitas , Humanos , Filogenia , Plantas , Bases de Dados Factuais
6.
Nature ; 506(7486): 89-92, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24362564

RESUMO

Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.


Assuntos
Evolução Biológica , Clima Frio , Ecossistema , Congelamento , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Xilema/anatomia & histologia , Funções Verossimilhança , Filogeografia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Sementes/fisiologia , Fatores de Tempo , Madeira/anatomia & histologia , Madeira/fisiologia , Xilema/fisiologia
7.
Molecules ; 25(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586028

RESUMO

The use of edible flowers in cooking dates back to ancient times, but recently it is gaining success among the consumers, increasingly attentive to healthy and sustainable foods of high quality, without neglecting taste, flavour, and visual appeal. The present study aims to deepen the knowledge regarding the mineral composition of edible flowers, an aspect not widely investigated in scientific literature. The concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, Sr, V, and Zn have been determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) in flowers belonging to a wide variety of species. The study highlights that some floral species are characterized by significantly higher concentrations of certain trace elements, e.g., the flowers of Acmella oleracea for Mn, those of basil (Ocimum basilicum) and of pumpkins (Cucurbita moschata and C. pepo) for Cu and Sr, and those of orange daylily (Hemerocallis fulva) for Ni. Potentially toxic elements are present at low concentrations, often below the limit of the detection for Cd, Co, Ni, V. In all samples, Cd and Pb are well below the maximum permitted levels in foodstuffs. It can be concluded that the edible flowers analyzed can be considered a good source of essential elements and do not present risks for the consumer health as for the mineral composition.


Assuntos
Flores/química , Saúde , Oligoelementos/análise , Liofilização , Humanos , Itália , Análise de Componente Principal , Controle de Qualidade , Fatores de Risco
9.
Ann Bot ; 119(2): 279-288, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578766

RESUMO

BACKGROUND AND AIMS: Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. METHODS: We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. KEY RESULTS: Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year-1), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year-1). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. CONCLUSIONS: Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions.


Assuntos
Clima , Poaceae , Mudança Climática , Ecossistema
12.
Sci Data ; 8(1): 215, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389730

RESUMO

The World Checklist of Vascular Plants (WCVP) is a comprehensive list of scientifically described plant species, compiled over four decades, from peer-reviewed literature, authoritative scientific databases, herbaria and observations, then reviewed by experts. It is a vital tool to facilitate plant diversity research, conservation and effective management, including sustainable use and equitable sharing of benefits. To maximise utility, such lists should be accessible, explicitly evidence-based, transparent, expert-reviewed, and regularly updated, incorporating new evidence and emerging scientific consensus. WCVP largely meets these criteria, being continuously updated and freely available online. Users can browse, search, or download a user-defined subset of accepted species with corresponding synonyms and bibliographic details, or a date-stamped full dataset. To facilitate appropriate data reuse by individual researchers and global initiatives including Global Biodiversity Information Facility, Catalogue of Life and World Flora Online, we document data collation and review processes, the underlying data structure, and the international data standards and technical validation that ensure data quality and integrity. We also address the questions most frequently received from users.


Assuntos
Biodiversidade , Traqueófitas/classificação
13.
Nat Ecol Evol ; 5(11): 1499-1509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429536

RESUMO

To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.


Assuntos
Carbono , Conservação dos Recursos Naturais , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Vertebrados
14.
Plants (Basel) ; 9(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878166

RESUMO

Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives. The agro-biodiversity in these regions has, likewise, often been considered threatened. Biodiversity and agro-biodiversity hotspots partly overlap, but their geographic intricacies have rarely been investigated together. Here we review the history of these two concepts and explore their geographic relationship by analysing global distribution and human use data for all plants, and for major crops and associated wild relatives. We highlight a geographic continuum between agro-biodiversity hotspots that contain high richness in species that are intensively used and well known by humanity (i.e., major crops and most viewed species on Wikipedia) and biodiversity hotspots encompassing species that are less heavily used and documented (i.e., crop wild relatives and species lacking information on Wikipedia). Our contribution highlights the key considerations needed for further developing a unifying concept of agro-biodiversity hotspots that encompasses multiple facets of diversity (including genetic and phylogenetic) and the linkage with overall biodiversity. This integration will ultimately enhance our understanding of the geography of human-plant interactions and help guide the preservation of nature and its contributions to people.

15.
Sci Rep ; 9(1): 11693, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406123

RESUMO

Islands have remarkable levels of endemism and contribute greatly to global biodiversity. Establishing the age of island endemics is important to gain insights into the processes that have shaped the biodiversity patterns of island biota. We investigated the relative age of monocots across islands worldwide, using different measures of phylogenetic endemism tested against null models. We compiled a species occurrence dataset across 4,306 islands, and identified 142 sites with neo-, paleo-, mixed and super-endemism. These sites were distributed across the world, although they tended to be more common at low latitudes. The most frequent types of endemism were mixed and super-endemism, which suggests that present-day island biodiversity has frequently been shaped by processes that took place at different points in times. We also identified the environmental factors that contributed most to different types of endemism; we found that latitude, habitat availability and climate stability had a significant impact on the persistence of ancient taxa and on recent diversification events. The islands identified here are irreplaceable both for the uniqueness and the evolutionary history of their flora, and because they are a source of "option values" and evolutionary potential. Therefore, our findings will help guide biodiversity conservation on a global scale.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Filogenia , Dispersão Vegetal/fisiologia , Biodiversidade , Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Ilhas , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Fatores de Tempo
16.
Sci Rep ; 9(1): 14471, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597935

RESUMO

Island systems are among the most vulnerable to climate change, which is predicted to induce shifts in temperature, rainfall and/or sea levels. Our aim was: (i) to map the relative vulnerability of islands to each of these threats from climate change on a worldwide scale; (ii) to estimate how island vulnerability would impact phylogenetic diversity. We focused on monocotyledons, a major group of flowering plants that includes taxa of important economic value such as palms, grasses, bananas, taro. Islands that were vulnerable to climate change were found at all latitudes, e.g. in Australia, Indonesia, the Caribbean, Pacific countries, the United States, although they were more common near the equator. The loss of highly vulnerable islands would lead to relatively low absolute loss of plant phylogenetic diversity. However, these losses tended to be higher than expected by chance alone even in some highly vulnerable insular systems. This suggests the possible collapse of deep and long branches in vulnerable islands. Measuring the vulnerability of each island is a first step towards a risk analysis to identify where the impacts of climate change are the most likely and what may be their consequences on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Ilhas , Magnoliopsida/classificação , Filogenia
17.
Nat Ecol Evol ; 3(7): 1043-1047, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182811

RESUMO

Most people can name a mammal or bird that has become extinct in recent centuries, but few can name a recently extinct plant. We present a comprehensive, global analysis of modern extinction in plants. Almost 600 species have become extinct, at a higher rate than background extinction, but almost as many have been erroneously declared extinct and then been rediscovered. Reports of extinction on islands, in the tropics and of shrubs, trees or species with narrow ranges are least likely to be refuted by rediscovery. Plant extinctions endanger other organisms, ecosystems and human well-being, and must be understood for effective conservation planning.


Assuntos
Ecossistema , Extinção Biológica , Animais , Aves , Geografia , Humanos , Mamíferos
18.
PhytoKeys ; 129: 1-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523157

RESUMO

A synopsis of the genera Coleus Lour, Equilabium A.J.Paton, Mwany. & Culham and Plectranthus L'Hér. (Lamiaceae, Tribe Ocimeae, Subtribe Plecranthinae) is presented. Generic delimitation follows a recently published molecular phylogeny which identified Coleus as the sister of the remaining genera of Subtribe Plectranthinae; Plectranthus as sister to Tetradenia Benth. and Thorncroftia N.E.Br., and a separate phylogenetically distinct genus Equilabium comprising species previously placed in Plectranthus. In this treatment, 294 species of Coleus, 42 of Equilabium, and 72 of Plectranthus are recognized. All but one of the combinations in Equilabium are new as only the genus and type species have been previously published. Two-hundred and twelve names are changed to combinations in Coleus from Plectranthus, Pycnostachys Hook. and Anisochilus Benth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA