Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709925

RESUMO

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Glicocálix , Quinolinas , Receptor ErbB-2 , Células Estromais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Glicocálix/metabolismo , Animais , Linhagem Celular Tumoral , Células Estromais/metabolismo , Células Estromais/patologia , Quinolinas/farmacologia , Camundongos , Comunicação Celular , Técnicas de Cocultura , Mucina-1/metabolismo , Mucina-1/genética , Transdução de Sinais , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266948

RESUMO

Hypoxia is an important phenomenon in solid tumors that contributes to metastasis, tumor microenvironment (TME) deregulation, and resistance to therapies. The receptor tyrosine kinase AXL is an HIF target, but its roles during hypoxic stress leading to the TME deregulation are not well defined. We report here that the mammary gland-specific deletion of Axl in a HER2+ mouse model of breast cancer leads to a normalization of the blood vessels, a proinflammatory TME, and a reduction of lung metastases by dampening the hypoxic response in tumor cells. During hypoxia, interfering with AXL reduces HIF-1α levels altering the hypoxic response leading to a reduction of hypoxia-induced epithelial-to-mesenchymal transition (EMT), invasion, and production of key cytokines for macrophages behaviors. These observations suggest that inhibition of Axl generates a suitable setting to increase immunotherapy. Accordingly, combining pharmacological inhibition of Axl with anti-PD-1 in a preclinical model of HER2+ breast cancer reduces the primary tumor and metastatic burdens, suggesting a potential therapeutic approach to manage HER2+ patients whose tumors present high hypoxic features.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunoterapia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inibidores de Checkpoint Imunológico/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Microambiente Tumoral/efeitos dos fármacos , Receptor Tirosina Quinase Axl
3.
Nat Cell Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926506

RESUMO

KMT2C and KMT2D, encoding histone H3 lysine 4 methyltransferases, are among the most commonly mutated genes in triple-negative breast cancer (TNBC). However, how these mutations may shape epigenomic and transcriptomic landscapes to promote tumorigenesis is largely unknown. Here we describe that deletion of Kmt2c or Kmt2d in non-metastatic murine models of TNBC drives metastasis, especially to the brain. Global chromatin profiling and chromatin immunoprecipitation followed by sequencing revealed altered H3K4me1, H3K27ac and H3K27me3 chromatin marks in knockout cells and demonstrated enhanced binding of the H3K27me3 lysine demethylase KDM6A, which significantly correlated with gene expression. We identified Mmp3 as being commonly upregulated via epigenetic mechanisms in both knockout models. Consistent with these findings, samples from patients with KMT2C-mutant TNBC have higher MMP3 levels. Downregulation or pharmacological inhibition of KDM6A diminished Mmp3 upregulation induced by the loss of histone-lysine N-methyltransferase 2 (KMT2) and prevented brain metastasis similar to direct downregulation of Mmp3. Taken together, we identified the KDM6A-matrix metalloproteinase 3 axis as a key mediator of KMT2C/D loss-driven metastasis in TNBC.

4.
J Clin Invest ; 134(7)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300710

RESUMO

BACKGROUNDHER2-targeting therapies have great efficacy in HER2-positive breast cancer, but resistance, in part due to HER2 heterogeneity (HET), is a significant clinical challenge. We previously described that in a phase II neoadjuvant trastuzumab emtansine (T-DM1) and pertuzumab (P) clinical trial in early-stage HER2-positive breast cancer, none of the patients with HER2-HET tumors had pathologic complete response (pCR).METHODSTo investigate cellular and molecular differences among tumors according to HER2 heterogeneity and pCR, we performed RNA sequencing and ERBB2 FISH of 285 pretreatment and posttreatment tumors from 129 patients in this T-DM1+P neoadjuvant trial. A subset of cases was also subject to NanoString spatial digital profiling.RESULTSPretreatment tumors from patients with pCR had the highest level of ERBB2 mRNA and ERBB signaling. HER2 heterogeneity was associated with no pCR, basal-like features, and low ERBB2 expression yet high ERBB signaling sustained by activation of downstream pathway components. Residual tumors showed decreased HER2 protein levels and ERBB2 copy number heterogeneity and increased PI3K pathway enrichment and luminal features. HET tumors showed minimal treatment-induced transcriptomic changes compared with non-HET tumors. Immune infiltration correlated with pCR and HER2-HET status.CONCLUSIONResistance mechanisms in HET and non-HET tumors are distinct. HER2-targeting antibodies have limited efficacy in HET tumors. Our results support the stratification of patients based on HET status and the use of agents that target downstream components of the ERBB signaling pathway in patients with HET tumors.TRIAL REGISTRATIONClinicalTrials.gov NCT02326974.FUNDINGThis study was funded by Roche and the National Cancer Institute.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Ado-Trastuzumab Emtansina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fosfatidilinositol 3-Quinases , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico
5.
Trends Cancer ; 9(9): 726-737, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248149

RESUMO

Intratumor heterogeneity (ITH) is a driver of tumor evolution and a main cause of therapeutic resistance. Despite its importance, measures of ITH are still not incorporated into clinical practice. Consequently, standard treatment is frequently ineffective for patients with heterogeneous tumors as changes to treatment regimens are made only after recurrence and disease progression. More effective combination therapies require a mechanistic understanding of ITH and ways to assess it in clinical samples. The growth of technologies enabling the spatially intact analysis of tumors at the single-cell level and the development of sophisticated preclinical models give us hope that ITH will not simply be used as a predictor of a poor outcome but will guide treatment decisions from diagnosis through treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Progressão da Doença
6.
Cell Rep ; 42(8): 112936, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552602

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastasis, which is the leading cause of death in breast cancer patients. Here, we show that Cdc42 GTPase-activating protein (CdGAP) promotes tumor formation and metastasis to lungs in the HER2-positive (HER2+) murine breast cancer model. CdGAP facilitates intravasation, extravasation, and growth at metastatic sites. CdGAP depletion in HER2+ murine primary tumors mediates crosstalk with a Dlc1-RhoA pathway and is associated with a transforming growth factor ß (TGF-ß)-induced EMT transcriptional signature. CdGAP is positively regulated by TGF-ß signaling during EMT and interacts with the adaptor talin to modulate focal adhesion dynamics and integrin activation. Moreover, HER2+ breast cancer patients with high CdGAP mRNA expression combined with a high TGF-ß-EMT signature are more likely to present lymph node invasion. Our results suggest CdGAP as a candidate therapeutic target for HER2+ metastatic breast cancer by inhibiting TGF-ß and integrin/talin signaling pathways.


Assuntos
Neoplasias da Mama , Fator de Crescimento Transformador beta , Humanos , Animais , Camundongos , Feminino , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Mama/patologia , Talina/metabolismo , Proteínas de Transporte , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Integrinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Metástase Neoplásica , Movimento Celular
7.
Nat Commun ; 14(1): 3561, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322009

RESUMO

Intratumor heterogeneity associates with poor patient outcome. Stromal stiffening also accompanies cancer. Whether cancers demonstrate stiffness heterogeneity, and if this is linked to tumor cell heterogeneity remains unclear. We developed a method to measure the stiffness heterogeneity in human breast tumors that quantifies the stromal stiffness each cell experiences and permits visual registration with biomarkers of tumor progression. We present Spatially Transformed Inferential Force Map (STIFMap) which exploits computer vision to precisely automate atomic force microscopy (AFM) indentation combined with a trained convolutional neural network to predict stromal elasticity with micron-resolution using collagen morphological features and ground truth AFM data. We registered high-elasticity regions within human breast tumors colocalizing with markers of mechanical activation and an epithelial-to-mesenchymal transition (EMT). The findings highlight the utility of STIFMap to assess mechanical heterogeneity of human tumors across length scales from single cells to whole tissues and implicates stromal stiffness in tumor cell heterogeneity.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fenômenos Mecânicos , Elasticidade , Colágeno , Redes Neurais de Computação , Microscopia de Força Atômica/métodos
8.
Cancers (Basel) ; 14(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35158733

RESUMO

The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL's functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL's role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.

9.
Small GTPases ; 13(1): 48-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33660564

RESUMO

The engulfment and cell motility 3 (ELMO3) protein belongs to the ELMO-family of proteins. ELMO proteins form a tight complex with the DOCK1-5 guanine nucleotide exchange factors that regulate RAC1 spatiotemporal activation and signalling. DOCK proteins and RAC1 are known to have fundamental roles in central nervous system development. Here, we searched for homozygous or compound heterozygous mutations in the ELMO3 gene in 390 whole exomes sequenced in trio in individuals with neurodevelopmental disorders compatible with a genetic origin. We found a compound heterozygous mutation in ELMO3 (c.1153A>T, p.Ser385Cys and c.1009 G > A, p.Val337Ile) in a 5 year old male child with autism spectrum disorder (ASD) and developmental delay. These mutations did not interfere with the formation of an ELMO3/DOCK1 complex, but markedly impaired the ability of the complex to promote RAC1-GTP-loading. Consequently, cells expressing DOCK1 and either of the ELMO3 mutants displayed impaired migration and invasion. Collectively, our results suggest that biallelic loss-of-function mutations in ELMO3 may cause a developmental delay and provide new insight into the role of ELMO3 in neurodevelopmental as well as the pathological consequences of ELMO3 mutations.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Masculino , Criança , Humanos , Pré-Escolar , Deficiência Intelectual/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Commun Biol ; 4(1): 1042, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493786

RESUMO

High mortality of prostate cancer patients is primarily due to metastasis. Understanding the mechanisms controlling metastatic processes remains essential to develop novel therapies designed to prevent the progression from localized disease to metastasis. CdGAP plays important roles in the control of cell adhesion, migration, and proliferation, which are central to cancer progression. Here we show that elevated CdGAP expression is associated with early biochemical recurrence and bone metastasis in prostate cancer patients. Knockdown of CdGAP in metastatic castration-resistant prostate cancer (CRPC) PC-3 and 22Rv1 cells reduces cell motility, invasion, and proliferation while inducing apoptosis in CdGAP-depleted PC-3 cells. Conversely, overexpression of CdGAP in DU-145, 22Rv1, and LNCaP cells increases cell migration and invasion. Using global gene expression approaches, we found that CdGAP regulates the expression of genes involved in epithelial-to-mesenchymal transition, apoptosis and cell cycle progression. Subcutaneous injection of CdGAP-depleted PC-3 cells into mice shows a delayed tumor initiation and attenuated tumor growth. Orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastasic burden. Collectively, these findings support a pro-oncogenic role of CdGAP in prostate tumorigenesis and unveil CdGAP as a potential biomarker and target for prostate cancer treatments.


Assuntos
Apoptose , Ciclo Celular , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Neoplasias da Próstata/patologia , Animais , Masculino , Camundongos , Camundongos Nus
11.
Nat Commun ; 11(1): 3586, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681075

RESUMO

Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Adesões Focais/genética , Humanos , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/fisiopatologia , Paxilina/genética , Paxilina/metabolismo , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Receptor Tirosina Quinase Axl
12.
Oncotarget ; 10(21): 2055-2067, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31007848

RESUMO

Triple-Negative Breast Cancer (TNBC) is an aggressive cancer subtype that is associated with a poor prognosis due to its propensity to form metastases. The receptor tyrosine kinase AXL plays a role in tumor cell dissemination and its expression in breast cancers correlates with poor patient survival. Here, we explored whether already used drugs might elicit a gene signature similar to that seen with AXL knockdown in TNBC cells and which could, therefore, offer an opportunity for drug repurposing. To this end, we queried the Connectivity Map with an AXL gene signature which revealed a class of dopamine receptors antagonists named phenothiazines (Thioridazine, Fluphenazine and Trifluoperazine) typically used as anti-psychotics. We next tested if these drugs, similarly to AXL depletion, were able to limit growth and metastatic progression of TNBC cells and found that phenothiazines are able to reduce cell invasion, proliferation, viability and increase apoptosis of TNBC cells in vitro. Mechanistically, these drugs did not affect AXL activity but instead reduced PI3K/AKT/mTOR and ERK signaling. When administered to mice bearing TNBC xenografts, phenothiazines were able to reduce tumor growth and metastatic burden. Collectively, these results suggest that these antipsychotics display anti-tumor and anti-metastatic activity and that they could potentially be repurposed, in combination with standard chemotherapy, for the treatment of TNBC.

13.
Cell Rep ; 22(4): 1016-1030, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386124

RESUMO

Cancer cells exploit the epithelial-to-mesenchymal transition (EMT) program to become metastatic. Cytoskeletal regulators are required in mesenchymal cells where they promote EMT and EMT-induced migration. In a search for regulators of metastasis, we conducted shRNA screens targeting the microtubule plus-end tracking proteins (+TIPs). We show that the +TIP ACF7 is essential both for the maintenance of the EMT program and to promote migration. We find that the E3 ubiquitin ligase HectD1 promotes ACF7-proteasome-mediated degradation. Depletion of HectD1 stabilized ACF7, and this enhanced EMT and migration. Decreased HectD1 expression increased metastases in mouse models and conferred increased resistance to the cytotoxic drug cisplatin. A retrospective analysis of biopsies from breast cancer patients also reveals a correlation between higher ACF7 or lower HectD1 expression with poor clinical outcomes. Together, these results suggest that the control of ACF7 levels by HectD1 modulates EMT and the efficiency of metastasis.


Assuntos
Proteínas dos Microfilamentos/genética , Ubiquitina-Proteína Ligases/genética , Animais , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Transdução de Sinais
14.
Cell Rep ; 23(5): 1476-1490, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719259

RESUMO

AXL is activated by its ligand GAS6 and is expressed in triple-negative breast cancer cells. In the current study, we report AXL expression in HER2-positive (HER2+) breast cancers where it correlates with poor patient survival. Using murine models of HER2+ breast cancer, Axl, but not its ligand Gas6, was found to be essential for metastasis. We determined that AXL is required for intravasation, extravasation, and growth at the metastatic site. We found that AXL is expressed in HER2+ cancers displaying epithelial-to-mesenchymal transition (EMT) signatures where it contributes to sustain EMT. Interfering with AXL in a patient-derived xenograft (PDX) impaired transforming growth factor ß (TGF-ß)-induced cell invasion. Last, pharmacological inhibition of AXL specifically decreased the metastatic burden of mice developing HER2+ breast cancer. Our data identify AXL as a potential anti-metastatic co-therapeutic target for the treatment of HER2+ breast cancers.


Assuntos
Neoplasias da Mama/mortalidade , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor ErbB-2/genética , Receptor Tirosina Quinase Axl
16.
Diabetes ; 65(9): 2652-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27325288

RESUMO

Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adiposidade/fisiologia , Hipertrofia/metabolismo , Proteínas Oncogênicas/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Adipogenia/genética , Adipogenia/fisiologia , Adiposidade/genética , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Hipertrofia/genética , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Proteínas Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real
17.
Oncotarget ; 5(15): 5850-1, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25146334

RESUMO

Comment on: Signe Søes, Iben Lyster Daugaard, Brita Singers Sørensen, Andreas Carus, Manuel Mattheisen, Jan Alsner, Jens Overgaard, Henrik Hager, Lise Lotte Hansen, and Lasse Sommer Kristensen. Hypomethylation and increased expression of the putative oncogene ELMO3 are associated with lung cancer development and metastases formation. Oncoscience. 2014; 1(5): 367-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA