Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 268: 110354, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39237079

RESUMO

Alport syndrome (AS) is a hereditary disorder caused by pathogenic variants in COL4A3, COL4A4, or COL4A5 genes expressing α3, α4, and α5 chains of basement membrane type IV collagen (COL4). The triple-helical α3α4α5(IV) protomer is a major component of the mature glomerular basement membrane (GBM) whose defective formation in AS leads to structural GBM disruption and kidney dysfunction, often resulting in kidney replacement therapy. A genetically intact renal graft exposes the immune system to a non-tolerized α3α4α5(IV) component and an alloimmune response eventually ensues. So far, only IgG alloantibodies reacting against COL4 have been reported in AS alloimmune responses. Here, we report alloimmune glomerulonephritis mediated by IgA antibodies against the non-collagenous C-terminal domain 1 of the α5(IV) chain in a patient with autosomal recessive AS following a second kidney transplantation. The patient presented a not previously described biallelic variant in the COL4A4 gene. Immunological, diagnostic, and clinical implications are discussed.

2.
PLoS Pathog ; 18(7): e1010631, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816514

RESUMO

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Patrimônio Genético , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
J Med Virol ; 96(3): e29564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506145

RESUMO

Cytomegalovirus (CMV) DNA in plasma is mainly unprotected and highly fragmented. The size of the amplicon largely explains the variation in CMV DNA loads quantified across PCR platforms. In this proof-of-concept study, we assessed whether the CMV DNA fragmentation profile may vary across allogeneic hematopoietic stem cell transplant recipients (allo-SCT), within the same patient over time, or is affected by letermovir (LMV) use. A total of 52 plasma specimens from 14 nonconsecutive allo-SCT recipients were included. The RealTime CMV PCR (Abbott Molecular), was used to monitor CMV DNA load in plasma, and fragmentation was assessed with a laboratory-designed PCR generating overlapping amplicons (around 90-110 bp) within the CMV UL34, UL80.5, and UL54 genes. Intrapatient, inter-patient, and LMV-associated qualitative and quantitative variations in seven amplicons were observed. These variations were seemingly unrelated to the CMV DNA loads measured by the Abbott PCR assay. CMV DNA loads quantified by UL34_4, UL54.5, and UL80.5_1 PCR assays discriminate between LMV and non-LMV patients. Our observations may have relevant implications in the management of active CMV infection in allo-SCT recipients, either treated or not with LMV, although the data need further validation.


Assuntos
Acetatos , Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Quinazolinas , Humanos , Citomegalovirus/genética , Fragmentação do DNA , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infecções por Citomegalovirus/tratamento farmacológico , Transplantados , DNA Viral , Antivirais/uso terapêutico , Proteínas Virais/genética
5.
Anal Chem ; 95(32): 12113-12121, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37545056

RESUMO

The global prevalence of ß-lactam allergy poses a major challenge in administering first-line antibiotics, such as penicillins, to a significant portion of the population. The lack of ß-lactam IgE antibody pools with defined selectivity hampers the standardization and validation of in vitro assays for ß-lactam allergy testing. To address this limitation, this study introduces a synthetic IgE specific to ß-lactam antibiotics as a valuable tool for drug allergy research and diagnostic tests. Using phage display technology, we constructed a library of human single-chain antibody fragments (scFv) to target the primary determinant of amoxicillin, a widely used ß-lactam antibiotic. Subsequently, we produced a complete human synthetic IgE molecule using the highly efficient baculovirus expression vector system. This synthetic IgE molecule served as a standard in an in vitro chemiluminescence immunoassay for ß-lactam antibiotic allergy testing. Our results demonstrated a detection limit of 0.05 IU/mL (0.63 pM), excellent specificity (100%), and a four-fold higher clinical sensitivity (73%) compared to the in vitro reference assay when testing a cohort of 150 serum samples. These findings have significant implications for reliable interlaboratory comparison studies, accurate labeling of allergic patients, and combating the global public health threat of antimicrobial resistance. Furthermore, by serving as a valuable trueness control material, the synthetic IgE facilitates the standardization of diagnostic tests for ß-lactam allergy and demonstrates the potential of utilizing this synthetic strategy as a promising approach for generating reference materials in drug allergy research and diagnostics.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade , Humanos , Testes Cutâneos , Antibacterianos , beta-Lactamas , Penicilinas , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/epidemiologia , Monobactamas , Antibióticos beta Lactam , Imunoglobulina E
6.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139191

RESUMO

Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.


Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Humanos , Pré-Escolar , Rotavirus/metabolismo , Infecções por Rotavirus/genética , Células CACO-2 , Antígenos de Grupos Sanguíneos/metabolismo
7.
J Med Virol ; 94(1): 222-228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449894

RESUMO

The current study aimed at characterizing the dynamics of SARS-CoV-2 nucleocapsid (N) antigenemia in a cohort of critically ill adult COVID-19 patients and assessing its potential association with plasma levels of biomarkers of clinical severity and mortality. Seventy-three consecutive critically ill COVID-19 patients (median age, 65 years) were recruited. Serial plasma (n = 340) specimens were collected. A lateral flow immunochromatography assay and reverse-transcription polymerase chain reaction (RT-PCR) were used for SARS-CoV-2 N protein detection and RNA quantitation and in plasma, respectively. Serum levels of inflammatory and tissue-damage biomarkers in paired specimens were measured. SARS-CoV-RNA N-antigenemia and viral RNAemia were documented in 40.1% and 35.6% of patients, respectively at a median of 9 days since symptoms onset. The level of agreement between the qualitative results returned by the N-antigenemia assay and plasma RT-PCR was moderate (k = 0.57; p < 0.0001). A trend towards higher SARS-CoV-2 RNA loads was seen in plasma specimens testing positive for N-antigenemia assay than in those yielding negative results (p = 0.083). SARS-CoV-2 RNA load in tracheal aspirates was significantly higher (p < 0.001) in the presence of concomitant N-antigenemia than in its absence. Significantly higher serum levels of ferritin, lactose dehydrogenase, C-reactive protein, and D-dimer were quantified in paired plasma SARS-CoV-2 N-positive specimens than in those testing negative. Occurrence of SARS-CoV-2 N-antigenemia was not associated with increased mortality in univariate logistic regression analysis (odds ratio, 1.29; 95% confidence interval, 0.49-3.34; p = 0.59). In conclusion, SARS-CoV-2 N-antigenemia detection is relatively common in ICU patients and appears to associate with increased serum levels of inflammation and tissue-damage markers. Whether this virological parameter may behave as a biomarker of poor clinical outcome awaits further investigations.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/sangue , Estado Terminal , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos Virais/sangue , Biomarcadores/análise , Biomarcadores/sangue , COVID-19/mortalidade , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/sangue , Fosfoproteínas/imunologia , Estudos Prospectivos , RNA Viral/análise , RNA Viral/sangue , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Traqueia/virologia , Adulto Jovem
8.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142552

RESUMO

Human noroviruses (HuNoVs) are the main cause of acute gastroenteritis causing more than 50,000 deaths per year. Recent evidence shows that the gut microbiota plays a key role in enteric virus infectivity. In this context, we tested whether microbiota depletion or microbiota replacement with that of human individuals susceptible to HuNoVs infection could favor viral replication in mice. Four groups of mice (n = 5) were used, including a control group and three groups that were treated with antibiotics to eliminate the autochthonous intestinal microbiota. Two of the antibiotic-treated groups received fecal microbiota transplantation from a pool of feces from infants (age 1-3 months) or an auto-transplantation with mouse feces that obtained prior antibiotic treatment. The inoculation of the different mouse groups with a HuNoVs strain (GII.4 Sydney [P16] genotype) showed that the virus replicated more efficiently in animals only treated with antibiotics but not subject to microbiota transplantation. Viral replication in animals receiving fecal microbiota from newborn infants was intermediate, whereas virus excretion in feces from auto-transplanted mice was as low as in the control mice. The analysis of the fecal microbiota by 16S rDNA NGS showed deep variations in the composition in the different mice groups. Furthermore, differences were observed in the gene expression of relevant immunological mediators, such as IL4, CXCL15, IL13, TNFα and TLR2, at the small intestine. Our results suggest that microbiota depletion eliminates bacteria that restrict HuNoVs infectivity and that the mechanism(s) could involve immune mediators.


Assuntos
Infecções por Caliciviridae , Norovirus , Animais , Antibacterianos/farmacologia , Bactérias/genética , DNA Ribossômico , Fezes/microbiologia , Humanos , Lactente , Interleucina-13 , Interleucina-4 , Camundongos , Norovirus/genética , Receptor 2 Toll-Like , Fator de Necrose Tumoral alfa
9.
BMC Genomics ; 22(1): 849, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819031

RESUMO

BACKGROUND: Genome assembly of viruses with high mutation rates, such as Norovirus and other RNA viruses, or from metagenome samples, poses a challenge for the scientific community due to the coexistence of several viral quasispecies and strains. Furthermore, there is no standard method for obtaining whole-genome sequences in non-related patients. After polyA RNA isolation and sequencing in eight patients with acute gastroenteritis, we evaluated two de Bruijn graph assemblers (SPAdes and MEGAHIT), combined with four different and common pre-assembly strategies, and compared those yielding whole genome Norovirus contigs. RESULTS: Reference-genome guided strategies with both host and target virus did not present any advantages compared to the assembly of non-filtered data in the case of SPAdes, and in the case of MEGAHIT, only host genome filtering presented improvements. MEGAHIT performed better than SPAdes in most samples, reaching complete genome sequences in most of them for all the strategies employed. Read binning with CD-HIT improved assembly when paired with different analysis strategies, and more notably in the case of SPAdes. CONCLUSIONS: Not all metagenome assemblies are equal and the choice in the workflow depends on the species studied and the prior steps to analysis. We may need different approaches even for samples treated equally due to the presence of high intra host variability. We tested and compared different workflows for the accurate assembly of Norovirus genomes and established their assembly capacities for this purpose.


Assuntos
Metagenoma , Norovirus , Algoritmos , Benchmarking , Humanos , Metagenômica , Norovirus/genética , Análise de Sequência , Análise de Sequência de DNA , Software
10.
PLoS Pathog ; 15(6): e1007865, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226167

RESUMO

Rotavirus is the leading agent causing acute gastroenteritis in young children, with the P[8] genotype accounting for more than 80% of infections in humans. The molecular bases for binding of the VP8* domain from P[8] VP4 spike protein to its cellular receptor, the secretory H type-1 antigen (Fuc-α1,2-Gal-ß1,3-GlcNAc; H1), and to its precursor lacto-N-biose (Gal-ß1,3-GlcNAc; LNB) have been determined. The resolution of P[8] VP8* crystal structures in complex with H1 antigen and LNB and site-directed mutagenesis experiments revealed that both glycans bind to the P[8] VP8* protein through a binding pocket shared with other members of the P[II] genogroup (i.e.: P[4], P[6] and P[19]). Our results show that the L-fucose moiety from H1 only displays indirect contacts with P[8] VP8*. However, the induced conformational changes in the LNB moiety increase the ligand affinity by two-fold, as measured by surface plasmon resonance (SPR), providing a molecular explanation for the different susceptibility to rotavirus infection between secretor and non-secretor individuals. The unexpected interaction of P[8] VP8* with LNB, a building block of type-1 human milk oligosaccharides, resulted in inhibition of rotavirus infection, highlighting the role and possible application of this disaccharide as an antiviral. While key amino acids in the H1/LNB binding pocket were highly conserved in members of the P[II] genogroup, differences were found in ligand affinities among distinct P[8] genetic lineages. The variation in affinities were explained by subtle structural differences induced by amino acid changes in the vicinity of the binding pocket, providing a fine-tuning mechanism for glycan binding in P[8] rotavirus.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Antígenos Virais/química , Proteínas de Ligação a RNA/química , Rotavirus/química , Proteínas não Estruturais Virais/química , Sítios de Ligação , Proteínas do Capsídeo/química , Linhagem Celular , Cristalografia por Raios X , Humanos
11.
J Med Virol ; 93(4): 2301-2306, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33236799

RESUMO

Assessment of commercial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoassays for their capacity to provide reliable information on sera neutralizing activity is an emerging need. We evaluated the performance of two commercially available lateral flow immunochromatographic assays (LFIC; Wondfo SARS-CoV-2 Antibody test and the INNOVITA 2019-nCoV Ab test) in comparison with a SARS-CoV-2 neutralization pseudotyped assay for coronavirus disease 2019 (COVID-19) diagnosis in hospitalized patients and investigate whether the intensity of the test band in LFIC associates with neutralizing antibody (NtAb) titers. Ninety sera were included from 51 patients with moderate to severe COVID-19. A green fluorescent protein (GFP) reporter-based pseudotyped neutralization assay (vesicular stomatitis virus coated with SARS-CoV-2 spike protein) was used. Test line intensity was scored using a 4-level scale (0 to 3+). The overall sensitivity of LFIC assays was 91.1% for the Wondfo SARS-CoV-2 Antibody test, 72.2% for the INNOVITA 2019-nCoV IgG, 85.6% for the INNOVITA 2019-nCoV IgM, and 92.2% for the NtAb assay. Sensitivity increased for all assays in sera collected beyond day 14 after symptoms onset (93.9%, 79.6%, 93.9%, and 93.9%, respectively). Reactivities equal to or more intense than the positive control line (≥2+) in the Wondfo assay had a negative predictive value of 100% and a positive predictive value of 96.4% for high NtAb50 titers (≥1/160). Our findings support the use of LFIC assays evaluated herein, particularly the Wondfo test, for COVID-19 diagnosis. We also find evidence that these rapid immunoassays can be used to predict high SARS-CoV-2-S NtAb50 titers.


Assuntos
Anticorpos Neutralizantes/sangue , Teste para COVID-19/métodos , COVID-19/imunologia , Imunoensaio/métodos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/virologia , Proteínas de Fluorescência Verde , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Glicoproteína da Espícula de Coronavírus/imunologia
12.
Eur J Clin Microbiol Infect Dis ; 40(3): 485-494, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33404891

RESUMO

Whether antibody levels measured by commercially available enzyme or chemiluminescent immunoassays targeting the SARS-CoV-2 spike (S) protein can act as a proxy for serum neutralizing activity remains to be established for many of these assays. We evaluated the degree of correlation between neutralizing antibodies (NtAb) binding the SARS-CoV-2 spike (S) protein and SARS-CoV-2-S-IgG levels measured by four commercial immunoassays in sera drawn from hospitalized COVID-19 patients. Ninety sera from 51 hospitalized COVID-19 patients were tested by a pseudotyped virus neutralization assay, the LIAISON SARS-CoV-2 S1/S2 IgG, the Euroimmun SARS-CoV-2 IgG ELISA, the MAGLUMI 2019-nCoV IgG, and the COVID-19 ELISA IgG assays. Overall, the results obtained with the COVID-19 ELISA IgG test showed the highest agreement with the NtAb assay (κ, 0.85; 95% CI, 0.63-1). The most sensitive tests were the pseudotyped virus NtAb assay and the COVID-19 ELISA IgG assay (92.2% for both). Overall, the degree correlation between antibody titers resulting in 50% virus neutralization (NtAb50) in the pseudotyped virus assay and SARS-CoV-2 IgG levels was strong for the Euroimmun SARS-CoV-2 IgG ELISA (rho = 0.73) and moderate for the remaining assays (rho = 0.48 to 0.59). The kinetic profile of serum NtAb50 titers could not be reliably predicted by any of the SARS-CoV-2 IgG immunoassays. The suitability of SARS-CoV-2-S-IgG commercial immunoassays for inferring neutralizing activity of sera from hospitalized COVID-19 patients varies widely across tests and is influenced by the time of sera collection after the onset of symptoms.


Assuntos
Anticorpos Neutralizantes/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoensaio/métodos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/sangue , Feminino , Hospitalização , Humanos , Imunoglobulina G/sangue , Cinética , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Sensibilidade e Especificidade
13.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948268

RESUMO

Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.


Assuntos
Infecções por Caliciviridae/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Antígenos de Grupos Sanguíneos/imunologia , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Gastroenterite/microbiologia , Microbioma Gastrointestinal/fisiologia , Genótipo , Glicômica , Humanos , Imunidade , Norovirus/imunologia , Norovirus/patogenicidade , Rotavirus/imunologia , Rotavirus/patogenicidade , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Eficácia de Vacinas , Vacinas Virais
14.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498321

RESUMO

The gut microbiota has emerged as a key factor in the pathogenesis of intestinal viruses, including enteroviruses, noroviruses and rotaviruses (RVs), where stimulatory and inhibitory effects on infectivity have been reported. With the aim of determining whether members of the microbiota interact with RVs during infection, a combination of anti-RV antibody labeling, fluorescence-activated cell sorting and 16S rRNA amplicon sequencing was used to characterize the interaction between specific bacteria and RV in stool samples of children suffering from diarrhea produced by G1P[8] RV. The genera Ruminococcus and Oxalobacter were identified as RV binders in stools, displaying enrichments between 4.8- and 5.4-fold compared to samples nonlabeled with anti-RV antibodies. In vitro binding of the G1P[8] Wa human RV strain to two Ruminococcus gauvreauii human isolates was confirmed by fluorescence microscopy. Analysis in R. gauvreauii with antibodies directed to several histo-blood group antigens (HBGAs) indicated that these bacteria express HBGA-like substances on their surfaces, which can be the target for RV binding. Furthermore, in vitro infection of the Wa strain in differentiated Caco-2 cells was significantly reduced by incubation with R. gauvreauii. These data, together with previous findings showing a negative correlation between Ruminococcus levels and antibody titers to RV in healthy individuals, suggest a pivotal interaction between this bacterial group and human RV. These results reveal likely mechanisms of how specific bacterial taxa of the intestinal microbiota could negatively affect RV infection and open new possibilities for antiviral strategies.


Assuntos
Microbioma Gastrointestinal , Infecções por Rotavirus/microbiologia , Rotavirus/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , Pré-Escolar , Humanos , Intestinos/microbiologia , Intestinos/virologia , Ligação Proteica , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia , Ruminococcus/patogenicidade
15.
J Biol Chem ; 294(3): 759-769, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30377252

RESUMO

The emergence of the basement membrane (BM), a specialized form of extracellular matrix, was essential in the unicellular transition to multicellularity. However, the mechanism is unknown. Goodpasture antigen-binding protein (GPBP), a BM protein, was uniquely poised to play diverse roles in this transition owing to its multiple isoforms (GPBP-1, -2, and -3) with varied intracellular and extracellular functions (ceramide trafficker and protein kinase). We sought to determine the evolutionary origin of GPBP isoforms. Our findings reveal the presence of GPBP in unicellular protists, with GPBP-2 as the most ancient isoform. In vertebrates, GPBP-1 assumed extracellular function that is further enhanced by membrane-bound GPBP-3 in mammalians, whereas GPBP-2 retained intracellular function. Moreover, GPBP-2 possesses a dual intracellular/extracellular function in cnidarians, an early nonbilaterian group. We conclude that GPBP functioning both inside and outside the cell was of fundamental importance for the evolutionary transition to animal multicellularity and tissue evolution.


Assuntos
Evolução Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Membrana Basal/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Serina-Treonina Quinases/genética
16.
J Virol ; 90(17): 7703-14, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307569

RESUMO

UNLABELLED: Human noroviruses (NoVs) are the main etiological agents of acute gastroenteritis worldwide. While NoVs are highly diverse (more than 30 genotypes have been detected in humans), during the last 40 years most outbreaks and epidemics have been caused by GII.4 genotype strains, raising questions about their persistence in the population. Among other potential explanations, immune evasion is considered to be a main driver of their success. In order to study antibody recognition and evasion in detail, we analyzed a conformational epitope recognized by a monoclonal antibody (3C3G3) by phage display, site-directed mutagenesis, and surface plasmon resonance. Our results show that the predicted epitope is composed of 11 amino acids within the P domain: P245, E247, I389, Q390, R397, R435, G443, Y444, P445, N446, and D448. Only two of them, R397 and D448, differ from the homologous variant (GII.4 Den-Haag_2006b) and from a previous variant (GII.4 VA387_1996) that is not recognized by the antibody. A double mutant derived from the VA387_1996 variant containing both changes, Q396R and N447D, is recognized by the 3C3G3 monoclonal antibody, confirming the participation of the two sites in the epitope recognized by the antibody. Furthermore, a single change, Q396R, is able to modify the histo-blood group antigen (HBGA) recognition pattern. These results provide evidence that the epitope recognized by the 3C3G3 antibody is involved in the virus-host interactions, both at the immunological and at the receptor levels. IMPORTANCE: Human noroviruses are the main cause of viral diarrhea worldwide in people of all ages. Noroviruses can infect individuals who had been previously exposed to the same or different norovirus genotypes. Norovirus genotype GII.4 has been reported to be most prevalent during the last 40 years. In the present study, we describe a novel viral epitope identified by a monoclonal antibody and located within the highly diverse P domain of the capsid protein. The evolution of this epitope along with sequential GII.4 variants has allowed noroviruses to evade previously elicited antibodies, thus explaining how the GII.4 genotype can persist over long periods, reinfecting the population. Our results also show that the epitope participates in the recognition of host receptors that have evolved over time, as well.


Assuntos
Epitopos de Linfócito B/imunologia , Norovirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Técnicas de Visualização da Superfície Celular , Epitopos de Linfócito B/genética , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Mutagênese Sítio-Dirigida , Norovirus/classificação , Norovirus/genética , Ligação Proteica , Ressonância de Plasmônio de Superfície
17.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066297

RESUMO

Rotavirus remains a significant public health threat, especially in low-income countries, where it is the leading cause of severe acute childhood gastroenteritis, contributing to over 128,500 deaths annually. Although the introduction of the Rotarix and RotaTeq vaccines in 2006 marked a milestone in reducing mortality rates, approximately 83,158 preventable deaths persisted, showing ongoing challenges in vaccine accessibility and effectiveness. To address these issues, a novel subcutaneous vaccine formulation targeting multiple rotavirus genotypes has been developed. This vaccine consists of nine VP8* proteins from nine distinct rotavirus genotypes and sub-genotypes (P[4], P[6], P[8]LI, P[8]LIII, P[8]LIV, P[9], P[11], P[14], and P[25]) expressed in E. coli. Two groups of mice were immunized either with a single immunogen, the VP8* from the rotavirus Wa strain (P[8]LI), or with the nonavalent formulation. Preliminary results from mouse immunization studies showed promising outcomes, eliciting antibody responses against six of the nine immunogens. Notably, significantly higher antibody titers against VP8* P[8]LI were observed in the group immunized with the nonavalent vaccine compared to mice specifically immunized against this genotype alone. Overall, the development of parenteral vaccines targeting multiple rotavirus genotypes represents a promising strategy in mitigating the global burden of rotavirus-related morbidity and mortality, offering new avenues for disease prevention and control.


Assuntos
Anticorpos Antivirais , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Vacinas de Subunidades Antigênicas , Animais , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Camundongos , Rotavirus/imunologia , Rotavirus/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Imunogenicidade da Vacina , Genótipo , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/genética
18.
Sci Rep ; 14(1): 11896, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789475

RESUMO

The immune effector mechanisms involved in protecting against severe COVID-19 infection in elderly nursing home residents following vaccination or natural infection are not well understood. Here, we measured SARS-CoV-2 Spike (S)-directed functional antibody responses, including neutralizing antibodies (NtAb) and antibody Fc-mediated NK cell activity (degranulation and IFNγ production), against the Wuhan-Hu-1, BA.4/5 (for NtAb), and Omicron XBB.1.5 variants in elderly nursing home residents (n = 39; median age, 91 years) before and following a third (pre- and post-3D) and a fourth (pre- and post-4D) mRNA COVID-19 vaccine dose. Both 3D and 4D boosted NtAb levels against both (sub)variants. Likewise, 3D and 4D increased the ability of sera to trigger both LAMP1- and IFNγ-producing NK cells, in particular against XBB.1.5. In contrast to NtAb titres, the frequencies of LAMP1- and IFNγ-producing NK cells activated by antibodies binding to Wuhan-Hu-1 and Omicron XBB.1.5 S were comparable at all testing times. Stronger functional antibody responses were observed in vaccine-experienced participants compared to vaccine-naïve at some testing times. These findings can contribute to identifying a reliable correlate of protection in elderly nursing home residents against severe COVID-19 and inform future vaccine strategies in this population group.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Casas de Saúde , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Imunização Secundária , Células Matadoras Naturais/imunologia , Idoso , Vacinação/métodos , Formação de Anticorpos/imunologia
19.
Kidney Int ; 83(3): 438-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23254898

RESUMO

Goodpasture disease is an autoimmune disorder mediated by circulating autoantibodies against the noncollagenous-1 (NC1) domain of the α3 chain of type IV collagen (α3(IV)NC1). The structure of Goodpasture epitope(s) has been previously mapped into two main binding regions (E(A) and E(B)) of the α3(IV)NC1 domain using a residue mutation approach on the highly related α1(IV)NC1 domain. Here we combined phage display and surface plasmon resonance technology to more precisely localize the pathogenic binding sites. Peptides mimicking the Goodpasture epitope(s) were used to identify residues involved in autoantibody binding and found involvement of eight residues previously unrecognized within and outside of the E(A) or E(B) regions. Residue involvement in pathogenic reactivity was confirmed by site-directed mutagenesis on a more divergent α2(IV)NC1 molecule. From a mutant (M1) of the α2(IV)NC1 molecule, harboring residues previously identified as belonging to the Goodpasture epitope, additional chimeras were generated on the bases of phage display findings. All these mutants were shown to display higher reactivity with circulating Goodpasture autoantibodies than the M1 mutant. Thus, our results more precisely define Goodpasture epitope determinants and open new avenues to delineate comprehensive autoantibody-blocking agents for therapeutics.


Assuntos
Autoantígenos/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Colágeno Tipo IV/imunologia , Mapeamento de Epitopos/métodos , Mutagênese Sítio-Dirigida/métodos , Ressonância de Plasmônio de Superfície/métodos , Autoanticorpos/imunologia , Autoantígenos/química , Sítios de Ligação de Anticorpos , Colágeno Tipo IV/química , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Pessoa de Meia-Idade
20.
Microbiol Spectr ; 10(4): e0250521, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862999

RESUMO

Noroviruses are the leading cause of sporadic cases and outbreaks of viral gastroenteritis. For more than 20 years, most norovirus infections have been caused by the pandemic genotype GII.4, yet recent studies have reported the emergence of recombinant strains in many countries. In the present study, 4,950 stool samples collected between January 2016 and April 2020 in Valencia, Spain, from patients with acute gastroenteritis were analyzed to investigate the etiological agent. Norovirus was the most frequently detected enteric virus, with a positivity rate of 9.5% (471/4,950). Among 224 norovirus strains characterized, 175 belonged to genogroup II (GII) and 49 belonged to GI. Using dual genotyping based on sequencing of the open reading frame 1 (ORF1)/ORF2 junction region, we detected 25 different capsid-polymerase-type associations. The most common GII capsid genotype was GII.4 Sydney 2012, followed by GII.2, GII.3, GII.6, and GII.17. A high prevalence of recombinant strains (90.4%) was observed among GII infections between 2018 and 2020. GII.4 Sydney[P16] was the predominant genotype from 2019 to 2020. In addition, GII.P16 polymerase was found harbored within six different capsid genes. GI.4 and GI.3 were the predominant genotypes in genogroup I, in which recombinant strains were also found, such as GI.3[P10], GI.3[P13], and GI.5[P4]. Interestingly, applying the criterion of 2 times the standard deviation, we found that 12 sequences initially classified as GI.3 may represent two new tentative genotypes in genogroup I, designated GI.10 and GI.11. This study shows the extensive diversity of recombinant noroviruses circulating in Spain and highlights the role of recombination events in the spread of noroviruses. IMPORTANCE Human noroviruses are the most common cause of viral diarrhea. There are no approved vaccines to prevent their infections yet, which would be very useful to protect infants, small children, and the elderly in residential institutions. These viruses are extremely contagious and can be transmitted by contaminated food and water as well as directly from person to person. Molecular surveillance and epidemiology of norovirus infections allow the identification of the most common viral strains in different geographical areas over time. Noroviruses show wide genetic variability due to a high rate of mutations but also due to genomic recombinations, as we demonstrate in this study. We have detected 25 different viral capsid-polymerase gene associations among 224 norovirus strains characterized in Spain between January 2016 and April 2020, including two tentative new capsid genotypes in genogroup I.


Assuntos
Infecções por Caliciviridae , Infecções por Enterovirus , Gastroenterite , Norovirus , Idoso , Infecções por Caliciviridae/epidemiologia , Criança , Gastroenterite/epidemiologia , Genótipo , Humanos , Lactente , Norovirus/genética , Filogenia , RNA Viral/genética , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA