Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 17: 588, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506777

RESUMO

BACKGROUND: Only 2 % of the human genome code for proteins. Among the remaining 98 %, transposable elements (TEs) represent millions of sequences. TEs have an impact on genome evolution by promoting mutations. Especially, TEs possess their own regulatory sequences and can alter the expression pattern of neighboring genes. Since they can potentially be harmful, TE activity is regulated by epigenetic mechanisms. These mechanisms participate in the modulation of gene expression and can be associated with some human diseases resulting from gene expression deregulation. The fact that the TE silencing can be removed in cancer could explain a part of the changes in gene expression. Indeed, epigenetic modifications associated locally with TE sequences could impact neighboring genes since these modifications can spread to adjacent sequences. RESULTS: We compared the histone enrichment, TE neighborhood, and expression divergence of human genes between a normal and a cancer conditions. We show that the presence of TEs near genes is associated with greater changes in histone enrichment and that differentially expressed genes harbor larger histone enrichment variation related to the presence of particular TEs. CONCLUSIONS: Taken together, these results suggest that the presence of TEs near genes could favor important variation in gene expression when the cell environment is modified.


Assuntos
Elementos de DNA Transponíveis , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Algoritmos , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Cromossomos Humanos , Análise por Conglomerados , Biologia Computacional/métodos , Bases de Dados Genéticas , Epigênese Genética , Ontologia Genética , Variação Genética , Humanos , Modelos Estatísticos , Neoplasias/patologia
2.
PLoS One ; 19(7): e0299686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058678

RESUMO

Transpiration efficiency (TE), the biomass produced per unit of water transpired, is a key trait for crop performance under limited water. As water becomes scarce, increasing TE would contribute to increase crop drought tolerance. This study is a first step to explore pearl millet genotypic variability for TE on a large and representative diversity panel. We analyzed TE on 537 pearl millet genotypes, including inbred lines, test-cross hybrids, and hybrids bred for different agroecological zones. Three lysimeter trials were conducted in 2012, 2013 and 2015, to assess TE both under well-watered and terminal-water stress conditions. We recorded grain yield to assess its relationship with TE. Up to two-fold variation for TE was observed over the accessions used. Mean TE varied between inbred and testcross hybrids, across years and was slightly higher under water stress. TE also differed among hybrids developed for three agroecological zones, being higher in hybrids bred for the wetter zone, underlining the importance of selecting germplasm according to the target area. Environmental conditions triggered large Genotype x Environment (GxE) interactions, although TE showed some high heritability. Transpiration efficiency was the second contributor to grain yield after harvest index, highlighting the importance of integrating it into pearl millet breeding programs. Future research on TE in pearl millet should focus (i) on investigating the causes of its plasticity i.e. the GxE interaction (ii) on studying its genetic basis and its association with other important physiological traits.


Assuntos
Genótipo , Pennisetum , Transpiração Vegetal , Pennisetum/genética , Pennisetum/fisiologia , Pennisetum/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Secas , Água/metabolismo , Biomassa , Melhoramento Vegetal/métodos , Variação Genética
3.
Nat Plants ; 3: 17087, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650433

RESUMO

Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in Arabidopsis.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Fotossíntese , Fitocromo B/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ligação Proteica , RNA de Plantas , Transdução de Sinais , Temperatura , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 7: 11222, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097556

RESUMO

Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oryza/genética , Fatores de Transcrição/química , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Moleculares , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA