Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Bacteriol ; 202(11)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32205462

RESUMO

While alternating between insects and mammals during its life cycle, Yersinia pestis, the flea-transmitted bacterium that causes plague, regulates its gene expression appropriately to adapt to these two physiologically disparate host environments. In fleas competent to transmit Y. pestis, low-GC-content genes y3555, y3551, and y3550 are highly transcribed, suggesting that these genes have a highly prioritized role in flea infection. Here, we demonstrate that y3555, y3551, and y3550 are transcribed as part of a single polycistronic mRNA comprising the y3555, y3554, y3553, y355x, y3551, and y3550 genes. Additionally, y355x-y3551-y3550 compose another operon, while y3550 can be also transcribed as a monocistronic mRNA. The expression of these genes is induced by hyperosmotic salinity stress, which serves as an explicit environmental stimulus that initiates transcriptional activity from the predicted y3550 promoter. Y3555 has homology to pyridoxal 5'-phosphate (PLP)-dependent aromatic aminotransferases, while Y3550 and Y3551 are homologous to the Rid protein superfamily (YjgF/YER057c/UK114) members that forestall damage caused by reactive intermediates formed during PLP-dependent enzymatic activity. We demonstrate that y3551 specifically encodes an archetypal RidA protein with 2-aminoacrylate deaminase activity but Y3550 lacks Rid deaminase function. Heterologous expression of y3555 generates a critical aspartate requirement in a Salmonella entericaaspC mutant, while its in vitro expression, and specifically its heterologous coexpression with y3550, enhances the growth rate of an Escherichia coli ΔaspC ΔtyrB mutant in a defined minimal amino acid-supplemented medium. Our data suggest that the y3555, y3551, and y3550 genes operate cooperatively to optimize aromatic amino acid metabolism and are induced under conditions of hyperosmotic salinity stress.IMPORTANCE Distinct gene repertoires are expressed during Y. pestis infection of its flea and mammalian hosts. The functions of many of these genes remain predicted or unknown, necessitating their characterization, as this may provide a better understanding of Y. pestis specialized biological adaptations to the discrete environments of its two hosts. This study provides functional context to adjacently clustered horizontally acquired genes predominantly expressed in the flea host by deciphering their fundamental processes with regard to (i) transcriptional organization, (ii) transcription activation signals, and (iii) biochemical function. Our data support a role for these genes in osmoadaptation and aromatic amino acid metabolism, highlighting these as preferential processes by which Y. pestis gene expression is modulated during flea infection.


Assuntos
Aminoácidos Aromáticos/metabolismo , Sifonápteros/microbiologia , Yersinia pestis/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Óperon , Yersinia pestis/genética , Yersinia pestis/crescimento & desenvolvimento
2.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455197

RESUMO

Anaplasma marginale is a prototypical highly antigenically variant bacterial pathogen dependent on the sequential generation of major surface protein 2 (Msp2) outer membrane variants to establish persistent infection. Msp2 is encoded by a single expression site, and diversity is achieved by gene conversion of chromosomally encoded msp2 pseudogenes. Analysis of the full complement of msp2 pseudogenes in the St. Maries strain revealed identical sequences in different loci. The Florida strain shared the same locus structure, but in the loci where the St. Maries strain had two identical pseudogenes, the Florida strain had one whose sequence was identical to the St. Maries sequences, while the sequence of the second pseudogene differed. Consequently, we hypothesized that the msp2 pseudogene repertoire arose via gene duplication, allowing structural variation to occur in one copy but the utility of the other to be retained. Using comparative genomics, we first established that duplication of msp2 pseudogenes is common among A. marginale strains: all seven examined strains had at least one duplicate pair in which either the genes in the pair were maintained as identical copies or the genes contained segmental changes. We then demonstrated that a minimal segmental change in a duplicated pseudogene locus is sufficient for immune escape from the broad antibody response generated in a natural host, as is a completely divergent pseudogene sequence in an otherwise conserved locus. The results support a model in which a locus first duplicates, resulting in a second identical copy, and then progressively incorporates changes to generate an msp2 repertoire capable of generating sufficient antigenic variants to escape immunity and establish persistent infection.


Assuntos
Anaplasma marginale , Variação Antigênica/genética , Proteínas da Membrana Bacteriana Externa/genética , Pseudogenes/genética , Anaplasma marginale/genética , Anaplasma marginale/patogenicidade , Anaplasmose/imunologia , Anaplasmose/microbiologia , Antígenos de Bactérias/genética
3.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902857

RESUMO

Microcin PDI (MccPDI), a class IIa microcin that is produced by Escherichia coli strains 25 and 284, is known to inhibit foodborne pathogenic enterohemorrhagic E. coli serotypes O157:H7 and O26. Here we demonstrate that MccPDI can inhibit Shigella strains and E. coli isolates that are multidrug resistant, the latter including strains known to cause urinary tract infections in people and companion animals. Two exceptions out of 17 strains were identified. One of the two resistant E. coli isolates (AR0349) has a mutation in a critical amino acid residue that was identified in previous work as a requisite for the MccPDI precursor protein (McpM) to interact with outer membrane porin F (OmpF) on susceptible cells. The second resistant E. coli strain (MAD 96) had no mutations in ompF, but it was PCR positive for two antimicrobial peptides, of which colicin Ia/Ib likely inhibits the MccPDI-producing strain during coculture. Recombinant McpM was still effective against strain MAD 96. In an assessment of how MccPDI affects susceptible strains, results from both an extracellular ATP assay and a nucleic acid staining assay were consistent with membrane damage, while the addition of 200- to 600-Da polyethylene glycol (PEG) to cocultures protected against MccPDI (>600-Da PEG did not provide protection). Further studies using a paraformaldehyde cross-linking experiment and a bacterial two-hybrid assay demonstrated that MccPDI immunity protein (McpI) forms a multimeric complex with itself and presumably protects the producer strain from within the periplasm through an unknown mechanism.IMPORTANCE Microcins represent potential alternatives to conventional antibiotics for human and veterinary medicine. For them to be applied in this manner, however, we need to better understand their spectrum of activity, how these proteins interact with susceptible cells, and how producer cells are protected against the antimicrobial properties of the microcins. For microcin PDI (MccPDI), we report that the spectrum of activity likely includes most E. coli strains due to a conserved binding motif found on an outer membrane protein. Shigella has this motif as well and is susceptible to MccPDI killing via damage to the bacterial membrane. Receptor specificity suggests that these proteins could be used without causing large-scale disruptions to a microbiota, but this also increases the likelihood that resistance can evolve via random mutations. As with conventional antibiotics, good stewardship will be needed to preserve the efficacy of microcins should they be deployed for clinical use.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Shigella/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteriocinas/classificação , Bacteriocinas/genética , Bacteriocinas/isolamento & purificação , Técnicas de Cocultura , Colicinas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Testes de Sensibilidade Microbiana , Porinas , Proteínas Recombinantes , Shigella/genética , Infecções Urinárias/microbiologia
4.
Infect Immun ; 84(10): 2740-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27400719

RESUMO

Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain the core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale, which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of the native Msp2 protein structure and function, we demonstrate that structured elements, most notably, ß-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast, the HVR is overwhelmingly a random coil, with the structured α-helices and ß-sheets being confined to the genomically defined structural tethers that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion-type porin function in native Msp2. Importantly, the predominance of the random coil provides plasticity for the formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire.


Assuntos
Anaplasma marginale/imunologia , Anaplasmose/imunologia , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Variação Antigênica , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Evasão da Resposta Imune/fisiologia , Sequência de Aminoácidos , Anaplasma marginale/genética , Anaplasma marginale/patogenicidade , Anaplasmose/microbiologia , Anticorpos Antibacterianos/genética , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Conversão Gênica , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
5.
J Gen Virol ; 97(3): 803-812, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26653410

RESUMO

Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200  mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10(- )3 dilution within 15  h. Our findings indicate that RT-QuIC was at least 10,000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples.


Assuntos
Bioensaio/métodos , Encéfalo/metabolismo , Doenças das Cabras/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Scrapie/diagnóstico , Animais , Doenças das Cabras/diagnóstico , Doenças das Cabras/genética , Cabras , Proteínas PrPC/genética , Proteínas PrPSc/genética , Scrapie/metabolismo , Sensibilidade e Especificidade
6.
Infect Immun ; 83(11): 4178-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259814

RESUMO

Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alleles alone is insufficient to generate the number of variants required for persistence, A. marginale uses segmental gene conversion, in which oligonucleotide segments from multiple alleles are recombined into the expression site to generate a novel msp2 mosaic not represented elsewhere in the genome. Whether these segmental changes are sufficient to evade a broad antibody response is unknown. We addressed this question by identifying Msp2 variants that differed in primary structure within the immunogenic hypervariable region microdomains and tested whether they represented true antigenic variants. The minimal primary structural difference between variants was a single amino acid resulting from a codon insertion, and overall, the amino acid identity among paired microdomains ranged from 18 to 92%. Collectively, 89% of the expressed structural variants were also antigenic variants across all biological replicates, independent of a specific host major histocompatibility complex haplotype. Biological relevance is supported by the following: (i) all structural variants were expressed during infection of a natural host, (ii) the structural variation observed in the microdomains corresponded to the mean length of variants generated by segmental gene conversion, and (iii) antigenic variants were identified using a broad antibody response that developed during infection of a natural host. The findings demonstrate that segmental gene conversion efficiently generates Msp2 antigenic variants.


Assuntos
Anaplasma marginale/imunologia , Anaplasmose/imunologia , Variação Antigênica , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Sequência de Aminoácidos , Anaplasma marginale/química , Anaplasma marginale/genética , Anaplasmose/microbiologia , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Evasão da Resposta Imune , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
7.
Infect Immun ; 79(7): 2847-55, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21576345

RESUMO

Transmission of tick-borne pathogens requires transition between distinct host environments with infection and replication in host-specific cell types. Anaplasma marginale illustrates this transition: in the mammalian host, the bacterium infects and replicates in mature (nonnucleated) erythrocytes, while in the tick vector, replication occurs in nucleated epithelial cells. We hypothesized that proteins containing ankyrin motifs would be expressed by A. marginale only in tick cells and would traffic to the infected host cell nucleus. A. marginale encodes three proteins containing ankyrin motifs, an AnkA orthologue (the AM705 protein), AnkB (the AM926 protein), and AnkC (the AM638 protein). All three A. marginale Anks were confirmed to be expressed during intracellular infection: AnkA is expressed at significantly higher levels in erythrocytes, AnkB is expressed equally by both infected erythrocytes and tick cells, and AnkC is expressed exclusively in tick cells. There was no evidence of any of the Ank proteins trafficking to the nucleus. Thus, the hypothesis that ankyrin-containing motifs were predictive of cell type expression and nuclear localization was rejected. In contrast, AnkA orthologues in the closely related A. phagocytophilum and Ehrlichia chaffeensis have been shown to localize to the host cell nucleus. This difference, together with the lack of a nuclear localization signal in any of the AnkA orthologues, suggests that trafficking may be mediated by a separate transporter rather than by endogenous signals. Selection for divergence in Ank function among Anaplasma and Ehrlichia spp. is supported by both locus and allelic analyses of genes encoding orthologous proteins and their ankyrin motif compositions.


Assuntos
Anaplasma marginale/metabolismo , Anaplasmose/microbiologia , Repetição de Anquirina , Vetores Aracnídeos/microbiologia , Proteínas de Bactérias/genética , Eritrócitos/microbiologia , Carrapatos/microbiologia , Anaplasma marginale/genética , Anaplasma marginale/crescimento & desenvolvimento , Anaplasmose/transmissão , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Dermacentor/microbiologia , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichia chaffeensis/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Dados de Sequência Molecular , Sintenia
8.
Vet Parasitol ; 277S: 100023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34392948

RESUMO

Buparvaquone and parvaquone are hydroxynaphthoquinone compounds commonly used to treat livestock infected with Theileria species such as T. parva and T. annulata. In many (sub)tropical regions, chromatic changes in medicines can result from extreme environmental conditions and improper drug storage or handling, raising the possibility of drug degradation and loss of potency. We evaluated the effects of UV light, elevated temperature, and atmospheric air on the stability and potency of both buparvaquone and parvaquone by using a combination of high performance liquid chromatography (HPLC) and a T. equi based in vitro parasite growth inhibition assay (to measure potency). Aliquots (1ml; 3 replicates per treatment) of each compound were subjected to a variety of treatments that varied in duration and intensity followed by HPLC and potency assays. Exposure to ambient air for 50 days was correlated with a significant loss of potency for both buparvaquone (4535%, P< 0.05) and parvaquone (247%, P< 0.05), while elevated temperature (37°C) and UV light exposure (24 h) had no significant impact (P> 0.05). The decrease in potency of both buparvaquone and parvaquone correlated with drug degradation (r = -0.74 and -0.88, respectively) as measured by HPLC. In practice, if there is headspace present in the vial, then ambient air will invariably enter the vial and contribute to degradation of these compounds. Such degradation may contribute to increasing drug resistance, economic losses for farmers, and animal welfare concerns for animals that are treated for Theileria infections.

9.
Vet Parasitol X ; 3: 100023, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32904749

RESUMO

Buparvaquone and parvaquone are hydroxynaphthoquinone compounds commonly used to treat livestock infected with Theileria species such as T. parva and T. annulata. In many (sub)tropical regions, chromatic changes in medicines can result from extreme environmental conditions and improper drug storage or handling, raising the possibility of drug degradation and loss of potency. We evaluated the effects of UV light, elevated temperature, and atmospheric air on the stability and potency of both buparvaquone and parvaquone by using a combination of high performance liquid chromatography (HPLC) and a T. equi based in vitro parasite growth inhibition assay (to measure potency). Aliquots (1 ml; 3 replicates per treatment) of each compound were subjected to a variety of treatments that varied in duration and intensity followed by HPLC and potency assays. Exposure to ambient air for 50 days was correlated with a significant loss of potency for both buparvaquone (4535%, P <  0.05) and parvaquone (247%, P <  0.05), while elevated temperature (37°C) and UV light exposure (24 h) had no significant impact (P >  0.05). The decrease in potency of both buparvaquone and parvaquone correlated with drug degradation (r = -0.74 and -0.88, respectively) as measured by HPLC. In practice, if there is headspace present in the vial, then ambient air will invariably enter the vial and contribute to degradation of these compounds. Such degradation may contribute to increasing drug resistance, economic losses for farmers, and animal welfare concerns for animals that are treated for Theileria infections.

10.
PLoS One ; 14(7): e0217661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291256

RESUMO

A primary challenge in developing effective vaccines against obligate, intracellular, bacterial tick-borne pathogens that establish persistent infection is the identification of antigens that cross protect against multiple strains. In the case of Anaplasma marginale, the most prevalent tick-borne pathogen of cattle found worldwide, OmpA is an adhesin and thus a promising vaccine candidate. We sequenced ompA from cattle throughout Ghana naturally infected with A. marginale in order to determine the degree of variation in this gene in an area of suspected high genetic diversity. We compared the Ghanaian sequences with those available from N. America, Mexico, Australia and Puerto Rico. When considering only amino acid changes, three unique Ghanaian OmpA variants were identified. In comparison, strains from all other geographic regions, except one, shared a single OmpA variant, Variant 1, which differed from the Ghanaian variants. Next, using recombinant OmpA based on Variant 1, we determined that amino acid differences in OmpA in Ghanaian cattle as compared to OmpA Variant 1 did not alter the binding capacity of antibody directed against OmpA Variant 1, supporting the value of OmpA as a highly conserved vaccine candidate.


Assuntos
Substituição de Aminoácidos , Anaplasma marginale/genética , Anaplasmose/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Bovinos/microbiologia , Anaplasma marginale/imunologia , Anaplasmose/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Gana , Polimorfismo de Nucleotídeo Único
11.
Int J Parasitol ; 49(2): 127-137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367864

RESUMO

The factors involved in gain or loss of virulence in Babesia bovis are unknown. Spherical body protein 2 truncated copy 11 (sbp2t11) transcripts in B. bovis were recently reported to be a marker of attenuation for B. bovis strains. Increased cytoadhesion of B. bovis-infected red blood cells (iRBC) to vascular endothelial cells is associated with severe disease outcomes and an indicator of parasite virulence. Here, we created a stable B. bovis transfected line over-expressing sbp2t11 to determine whether up-regulation of sbp2t11 is associated with changes in cytoadhesion. This line was designated sbp2t11up and five B. bovis clonal lines were derived from the sbp2t11up line by limiting dilution for characterisation. We compared the ability of iRBCs from the sbp2t11up line and its five derivative clonal lines to adhere to bovine brain endothelial cells, using an in vitro cytoadhesion assay. The same lines were selected for in vitro cytoadhesion and the levels of sbp2t11 transcripts in each selected line were quantified. Our results demonstrate that up-regulation of sbp2t11 is accompanied by a statistically significant reduction in cytoadhesion. Confirmed up-regulation of sbp2t11 in B. bovis concomitant with the reduction of iRBC in vitro cytoadhesion to bovine brain endothelial cell is consistent with our previous finding that up-regulation of sbp2t11 is an attenuation marker in B. bovis and suggests the involvement of sbp2t11 transcription in B. bovis virulence.


Assuntos
Babesia bovis/fisiologia , Adesão Celular , Células Endoteliais/parasitologia , Expressão Gênica , Proteínas de Protozoários/biossíntese , Fatores de Virulência/biossíntese , Animais , Babesia bovis/genética , Bovinos , Células Cultivadas , Proteínas de Protozoários/genética , Fatores de Virulência/genética
12.
Mol Biochem Parasitol ; 188(2): 109-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23541863

RESUMO

Theileriosis in horses and cattle is caused by tick-borne Apicomplexa parasites and results in death or life-long infection in their respective hosts. Transmission risk associated with persistent infection severely limits movement of horses and cattle resulting in economic losses. The recent reemergence of Theileria equi infection in U.S. horses demonstrates the continual threat Apicomplexa parasites represent to global animal health. A paucity of data concerning equine immune responses to T. equi, including antigens recognized by antibodies in clinically asymptomatic, persistently infected horses, precludes vaccine development. Therefore, this investigation was initiated to characterize antigens recognized by the equine antibody response to T. equi. This goal was accomplished by defining T. equi merozoite antigens that are recognized by antibodies in horses infected with distinct T. equi isolates. Previously it was shown that equine post-infection serum consistently recognized at least five T. equi merozoite antigens, but their precise identity remained unknown. To determine specificity of antibody target identification, T. equi merozoite antigens were first isolated using equine post-infection serum in affinity chromatography. Proteins recognized by the equine antibodies were then isolated from two-dimensional electrophoresis gels, and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using the recently available T. equi genome database. Five T. equi antigens were identified and include Equi Merozoite Antigen-2 (EMA-2), EMA-3 and EMA-6, a previously uncharacterized protein annotated as "signal peptide containing protein", and 40S ribosomal protein S12.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Epitopos Imunodominantes/imunologia , Theileria/imunologia , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/isolamento & purificação , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Doenças dos Cavalos/imunologia , Cavalos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/isolamento & purificação , Merozoítos/imunologia , Espectrometria de Massas em Tandem , Theileriose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA