RESUMO
COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Hipermutação Somática de Imunoglobulina , SARS-CoV-2/imunologia , Humanos , Hipermutação Somática de Imunoglobulina/genética , COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células B de Memória/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/imunologia , Linfócitos B/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica/imunologia , Vacinas contra COVID-19/imunologiaRESUMO
BACKGROUND: Human tapasin deficiency is reported to cause an autosomal-recessive inborn error of immunity characterized by substantially reduced cell surface expression of major histocompatibility complex class I (MHC-I). OBJECTIVE: We evaluated the immunologic and clinical consequences of tapasin deficiency. METHODS: A novel homozygous variant in TAPBP was identified by means of whole genome sequencing. The expression of tapasin and both subunits of the transporter associated with antigen presentation (TAP) were evaluated by Western blot analysis. Cell surface and intracellular expression of MHC-I were evaluated by flow cytometry. Small interfering RNAs were used for silencing TAPBP expression in HEK293T cells. RESULTS: We identified a deletion in TAPBP (c.312del, p.(K104Nfs∗6)) causing tapasin deficiency in a patient with bronchiectasis and recurrent respiratory tract infections as well as herpes zoster. Besides substantial reduction in TAP1 and TAP2 expression, peripheral blood mononuclear cells from this patient and TAPBP-knockdown HEK293T cells, displayed reduced cell surface expression of MHC-I, while reduction in intracellular expression of MHC-I was less prominent, suggesting a defect in MHC-I trafficking to the plasma membrane. IFN-α improved cell surface expression of MHC-I in tapasin deficient lymphocytes and TAPBP-knockdown HEK293T cells, representing a possible therapeutic approach for tapasin deficiency. CONCLUSION: Tapasin deficiency is a very rare inborn error of immunity, the pathomechanism and clinical spectrum of which overlaps with TAP deficiencies.
Assuntos
Proteínas de Membrana Transportadoras , Humanos , Células HEK293 , Proteínas de Membrana Transportadoras/genética , Antígenos de Histocompatibilidade Classe I/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Fenótipo , Masculino , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , FemininoRESUMO
IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity.
Assuntos
Antígenos Ly/imunologia , Regulação da Expressão Gênica/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Antígenos Ly/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/genética , Células Matadoras Naturais/patologia , Camundongos , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Linfócitos T/imunologia , Linfócitos T/patologia , Vacínia/genética , Vacínia/patologia , Vaccinia virus/genéticaRESUMO
OBJECTIVES: The monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses. METHODS: CD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens. RESULTS: Rituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I. CONCLUSIONS: Depending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.
Assuntos
Antirreumáticos/efeitos adversos , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina/imunologia , Vacinas contra Influenza/imunologia , Interferon Tipo I/imunologia , Rituximab/efeitos adversos , Animais , Estudos de Casos e Controles , Citocinas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Camundongos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacínia/imunologia , Vaccinia virus/imunologiaAssuntos
Dietilnitrosamina , Hepatite , Humanos , Inflamação , Células de Kupffer , Receptor de Interferon alfa e betaAssuntos
Hepatite , Células de Kupffer , Animais , Carcinogênese , Fígado , Receptor de Interferon alfa e betaRESUMO
OBJECTIVE: Systemic sclerosis (SSc) is a severe rheumatic disease causing fibrotic tissue rearrangement. Aberrant toll-like receptor (TLR) 8 transcripts in plasmacytoid dendritic cells (pDCs) were recently linked to SSc pathogenesis, which is at least partially mediated by increased type I interferon (IFN-I) responses. Here, we addressed the functional role of TLR8 signaling in different immune cell subsets of patients with SSc. METHODS: Monocytes, conventional dendritic cells (cDCs), and pDCs from the blood and skin of patients with SSc were analyzed for TLR8 protein expression. To assess TLR function, cytokine responses upon TLR7 and TLR8 stimulation were studied. To identify relevant alterations specific for patients with SSc (n = 16), patients with primary Sjögren disease (pSS; n = 10) and healthy controls (HCs; n = 13) were included into the study. RESULTS: In all individuals, TLR8 was expressed in monocytes and cDCs but not in pDCs. The TLR8 expression levels were overall similar in patients with SSc and pSS and HCs. Additionally, in all study participants, TLR8 stimulation of pDCs did not induce IFN-I expression. In contrast, monocytes from patients with SSc revealed increased interleukin (IL)-10 responses upon TLR8 (patients with SSc vs HCs, P = 0.0126) and TLR7/8 stimulation (patients with SSc vs HCs, P = 0.0170). CONCLUSION: TLR8 protein is not expressed in pDCs of patients with SSc. Accordingly, they do not respond to TLR8 stimulation. In contrast, monocytes of patients with SSc respond to TLR8 stimulation with increased IL-10 responses. Therefore, TLR8 signaling in monocytes participates in SSc pathogenesis by conferring aberrant IL-10 expression.
RESUMO
Objective: The signal transducer and activator of transcription 3 (STAT3) gain-of-function (GOF) syndrome (STAT3-GOF) is an inborn error of immunity (IEI) characterized by diverse manifestations of immune dysregulation that necessitate systemic immunomodulatory treatment. The blockade of the interleukin-6 receptor and/or the inhibition of the Janus kinases has been commonly employed to treat diverse STAT3-GOF-associated manifestations. However, evidence on long-term treatment outcome, especially in the case of adult patients, is scarce. Methods: Clinical data, including laboratory findings and medical imaging, were collected from all seven patients, diagnosed with STAT3-GOF, who have been treated at the Hannover University School, focusing on those who received a Janus kinase (JAK) inhibitor (JAKi). Previously published cases of STAT3-GOF patients who received a JAKi were evaluated, focusing on reported treatment efficacy with respect to diverse STAT3-GOF-associated manifestations of immune dysregulation and safety. Results: Five out of seven patients diagnosed with STAT3-GOF were treated with a JAKi, each for a different indication. Including these patients, outcomes of JAKi treatment have been reported for a total of 41 patients. Treatment with a JAKi led to improvement of diverse autoimmune, inflammatory, or lymphoproliferative manifestations of STAT3-GOF and a therapeutic benefit could be documented for all except two patients. Considering all reported manifestations of immune dysregulation in each patient, complete remission was achieved in 10/41 (24.4%) treated patients. Conclusions: JAKi treatment improved diverse manifestations of immune dysregulation in the majority of STAT3-GOF patients, representing a promising therapeutic approach. Long-term follow-up data are needed to evaluate possible risks of prolonged treatment with a JAKi.
Assuntos
Mutação com Ganho de Função , Inibidores de Janus Quinases , Fator de Transcrição STAT3 , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação com Ganho de Função/imunologia , Inibidores de Janus Quinases/uso terapêutico , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Resultado do TratamentoRESUMO
Prolidase deficiency (PD) is a rare autosomal recessive inborn error of immunity caused by biallelic homozygous or compound heterozygous loss-of-function mutations in PEPD, the gene that encodes prolidase. PD typically manifests with variable dysmorphic features, chronic cutaneous ulcers, recurrent infections and autoimmune features, including systemic lupus erythematosus. So far, there is no consensus regarding treatment of PD and its autoimmune manifestations. Here, we present a 28-year-old female patient with PD due to a novel homozygous intragenic deletion in PEPD, diagnosed at the age of 6 years and 7 months with an undifferentiated connective tissue disease that, apart from its very early onset, would be consistent with the diagnosis of Sjögren's syndrome. Steroids and diverse conventional synthetic disease-modifying antirheumatic drugs failed to control PD-associated vasculitis and mucocutaneous ulcerations and led to infectious complications, including cytomegalovirus colitis. Introduction of rituximab (RTX) treatment in this patient led to sustained recession of mucocutaneous ulceration, enabling tapering of steroids. High interleukin-1ß (IL-1ß) production by this patient's monocytes, together with the detection of both IL-1ß and interleukin-18 (IL-18) in her serum, suggest enhanced inflammasome activation in PD, whereas the therapeutic efficacy of RTX implies a role for CD20 positive B cells in the complex immunopathogenesis of PD.
Assuntos
Deficiência de Prolidase , Síndrome de Sjogren , Feminino , Humanos , Criança , Adulto , Rituximab/uso terapêutico , Variações do Número de Cópias de DNA , Deficiência de Prolidase/complicações , Deficiência de Prolidase/diagnóstico , Deficiência de Prolidase/tratamento farmacológico , Síndrome de Sjogren/tratamento farmacológico , Esteroides/uso terapêuticoRESUMO
Here, we described the case of a B cell-deficient patient after CD19 CAR-T cell therapy for refractory B cell Non-Hodgkin Lymphoma with protracted coronavirus disease 2019 (COVID-19). For weeks, this patient only inefficiently contained the virus while convalescent plasma transfusion correlated with virus clearance. Interestingly, following convalescent plasma therapy natural killer cells matured and virus-specific T cells expanded, presumably allowing virus clearance and recovery from the disease. Our findings, thus, suggest that convalescent plasma therapy can activate cellular immune responses to clear SARS-CoV-2 infections. If confirmed in larger clinical studies, these data could be of general importance for the treatment of COVID-19 patients.
Assuntos
Linfócitos B , COVID-19/imunologia , COVID-19/terapia , Síndromes de Imunodeficiência/imunologia , Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , COVID-19/complicações , Feminino , Humanos , Imunização Passiva , Imunoglobulinas Intravenosas , Síndromes de Imunodeficiência/complicações , Ativação Linfocitária , Linfopoese , SARS-CoV-2 , Carga Viral , Soroterapia para COVID-19RESUMO
Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Antibacterianos/farmacologia , Humanos , Lipídeos , Macrófagos , Tuberculose/tratamento farmacológicoRESUMO
BACKGROUND: Serology testing is explored for epidemiological research and to inform individuals after suspected infection. During the coronavirus disease 2019 (COVID-19) pandemic, frontline healthcare professionals (HCP) may be at particular risk for infection. No longitudinal data on functional seroconversion in HCP in regions with low COVID-19 prevalence and low pre-test probability exist. METHODS: In a large German university hospital, we performed weekly questionnaire assessments and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) measurements with various commercial tests, a novel surrogate virus neutralisation test, and a neutralisation assay using live SARS-CoV-2. RESULTS: From baseline to week 6, 1080 screening measurements for anti-SARS CoV-2 (S1) IgG from 217 frontline HCP (65% female) were performed. Overall, 75.6% of HCP reported at least one symptom of respiratory infection. Self-perceived infection probability declined over time (from mean 20.1% at baseline to 12.4% in week 6, p < 0.001). In sera of convalescent patients with PCR-confirmed COVID-19, we measured high anti-SARS-CoV-2 IgG levels, obtained highly concordant results from enzyme-linked immunosorbent assays (ELISA) using e.g. the spike 1 (S1) protein domain and the nucleocapsid protein (NCP) as targets, and confirmed antiviral neutralisation. However, in HCP the cumulative incidence for anti-SARS-CoV-2 (S1) IgG was 1.86% for positive and 0.93% for equivocal positive results over the study period of 6 weeks. Except for one HCP, none of the eight initial positive results were confirmed by alternative serology tests or showed in vitro neutralisation against live SARS-CoV-2. The only true seroconversion occurred without symptoms and mounted strong functional humoral immunity. Thus, the confirmed cumulative incidence for neutralizing anti-SARS-CoV-2 IgG was 0.47%. CONCLUSION: When assessing anti-SARS-CoV-2 immune status in individuals with low pre-test probability, we suggest confirming positive results from single measurements by alternative serology tests or functional assays. Our data highlight the need for a methodical serology screening approach in regions with low SARS-CoV-2 infection rates. TRIAL REGISTRATION: The study is registered at DRKS00021152.
RESUMO
Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 µM and 4.97 µM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
Assuntos
Antivirais/farmacologia , Bacteriocinas/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Pulmão/citologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus Sincicial Respiratório Humano/fisiologiaRESUMO
BACKGROUND: Antibody-mediated targeting of regulatory T cell receptors such as CTLA-4 enhances antitumor immune responses against several cancer entities including malignant melanoma. Yet, therapeutic success in patients remains variable underscoring the need for novel combinatorial approaches. METHODS: Here we established a vaccination strategy that combines engagement of the nucleic acid-sensing pattern recognition receptor RIG-I, antigen and CTLA-4 blockade. We used in vitro transcribed 5'-triphosphorylated RNA (3pRNA) to therapeutically target the RIG-I pathway. We performed in vitro functional analysis in bone-marrow derived dendritic cells and investigated RIG-I-enhanced vaccines in different murine melanoma models. FINDINGS: We found that protein vaccination together with RIG-I ligation via 3pRNA strongly synergizes with CTLA-4 blockade to induce expansion and activation of antigen-specific CD8+ T cells that translates into potent antitumor immunity. RIG-I-induced cross-priming of cytotoxic T cells as well as antitumor immunity were dependent on the host adapter protein MAVS and type I interferon (IFN-I) signaling and were mediated by dendritic cells. INTERPRETATION: Overall, our data demonstrate the potency of a novel combinatorial vaccination strategy combining RIG-I-driven immunization with CTLA-4 blockade to prevent and treat experimental melanoma. FUND: German Research Foundation (SFB 1335, SFB 1371), EMBO, Else Kröner-Fresenius-Foundation, German Cancer Aid, European Hematology Association, DKMS Foundation for Giving Life, Dres. Carl Maximilian and Carl Manfred Bayer-Foundation.