RESUMO
Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.
Assuntos
Autofagia/fisiologia , Ácidos Graxos/metabolismo , Fagossomos/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Fosfolipídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.
Assuntos
Longevidade , Seleção Genética , Envelhecimento , Animais , Replicação do DNA , Evolução Molecular , Frequência do Gene , Genoma Mitocondrial , Peixes Listrados/classificação , Peixes Listrados/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Filogenia , FilogeografiaRESUMO
Gene expression involves regulation of chromatin structure and transcription, as well as processing of the transcribed mRNA. While there are feedback mechanisms, it is not clear whether these include crosstalk between chromatin architecture and mRNA decay. To address this, we performed a genome-wide genetic screen using a Saccharomyces cerevisiae strain harbouring the H3K56A mutation, which is known to perturb chromatin structure and nascent transcription. We identified Puf5 (also known as Mpt5) as essential in an H3K56A background. Depletion of Puf5 in this background leads to downregulation of Puf5 targets. We suggest that Puf5 plays a role in post-transcriptional buffering of mRNAs, and support this by transcriptional shutoff experiments in which Puf5 mRNA targets are degraded slower in H3K56A cells compared to wild-type cells. Finally, we show that post-transcriptional buffering of Puf5 targets is widespread and does not occur only in an H3K56A mutant, but also in an H3K4R background, which leads to a global increase in nascent transcription. Our data suggest that Puf5 determines the fate of its mRNA targets in a context-dependent manner acting as an mRNA surveillance hub balancing deregulated nascent transcription to maintain physiological mRNA levels.
Assuntos
Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição GênicaRESUMO
Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.
Assuntos
Genoma , Genômica , Fosforilação , Proteoma/genética , Saccharomyces cerevisiae/genéticaRESUMO
The highly conserved Target of Rapamycin (TOR) kinase is a central regulator of cell growth and metabolism in response to nutrient availability. TOR functions in two structurally and functionally distinct complexes, TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2). Through TORC1, TOR negatively regulates autophagy, a conserved process that functions in quality control and cellular homeostasis and, in this capacity, is part of an adaptive nutrient deprivation response. Here we demonstrate that during amino acid starvation TOR also operates independently as a positive regulator of autophagy through the conserved TORC2 and its downstream target protein kinase, Ypk1. Under these conditions, TORC2-Ypk1 signaling negatively regulates the Ca(2+)/calmodulin-dependent phosphatase, calcineurin, to enable the activation of the amino acid-sensing eIF2α kinase, Gcn2, and to promote autophagy. Our work reveals that the TORC2 pathway regulates autophagy in an opposing manner to TORC1 to provide a tunable response to cellular metabolic status.
Assuntos
Aminoácidos/farmacologia , Autofagia/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Calcineurina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Modelos Biológicos , Saccharomyces cerevisiae/citologiaRESUMO
To elucidate the functional roles of mitochondrial dynamics in vivo, we identified genes that become essential in cells lacking the dynamin-related proteins Fzo1 and Dnm1, which are required for mitochondrial fusion and division, respectively. The screen identified Num1, a cortical protein implicated in mitochondrial division and distribution that also functions in nuclear migration. Our data indicate that Num1, together with Mdm36, forms a physical tether that robustly anchors mitochondria to the cell cortex but plays no direct role in mitochondrial division. Our analysis indicates that Num1-dependent anchoring is essential for distribution of the static mitochondrial network in fzo1 dnm1 cells. Consistently, expression of a synthetic mitochondria-cortex tether rescues the viability of fzo1 dnm1 num1 cells. We find that the cortical endoplasmic reticulum (ER) also is a constituent of the Num1 mitochondria-cortex tether, suggesting an active role for the ER in mitochondrial positioning in cells. Thus, taken together, our findings identify Num1 as a key component of a mitochondria-ER-cortex anchor, which we termed "MECA," that functions in parallel with mitochondrial dynamics to distribute and position the essential mitochondrial network.
Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Genes Fúngicos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Autophagy is a conserved degradative process that is crucial for cellular homeostasis and cellular quality control via the selective removal of subcellular structures such as mitochondria. We demonstrate that a regulatory link exists between mitochondrial function and autophagy in Saccharomyces cerevisiae. During amino-acid starvation, the autophagic response consists of two independent regulatory arms-autophagy gene induction and autophagic flux-and our analysis indicates that mitochondrial respiratory deficiency severely compromises both. We show that the evolutionarily conserved protein kinases Atg1, target of rapamycin kinase complex I, and protein kinase A (PKA) regulate autophagic flux, whereas autophagy gene induction depends solely on PKA. Within this regulatory network, mitochondrial respiratory deficiency suppresses autophagic flux, autophagy gene induction, and recruitment of the Atg1-Atg13 kinase complex to the pre-autophagosomal structure by stimulating PKA activity. Our findings indicate an interrelation of two common risk factors-mitochondrial dysfunction and autophagy inhibition-for ageing, cancerogenesis, and neurodegeneration.
Assuntos
Aminoácidos/metabolismo , Autofagia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas Relacionadas à Autofagia , Respiração Celular , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de SinaisRESUMO
During autophagy, rapid membrane assembly expands small phagophores into large double-membrane autophagosomes. Theoretical modeling predicts that the majority of autophagosomal phospholipids are derived from highly efficient non-vesicular phospholipid transfer (PLT) across phagophore-ER contacts (PERCS). Currently, the phagophore-ER tether Atg2 is the only PLT protein known to drive phagophore expansion in vivo. Here, our quantitative live-cell imaging analysis reveals a poor correlation between the duration and size of forming autophagosomes and the number of Atg2 molecules at PERCS of starving yeast cells. Strikingly, we find that Atg2-mediated PLT is non-rate limiting for autophagosome biogenesis because membrane tether and the PLT protein Vps13 localizes to the rim and promotes the expansion of phagophores in parallel with Atg2. In the absence of Vps13, the number of Atg2 molecules at PERCS determines the duration and size of forming autophagosomes with an apparent in vivo transfer rate of â¼200 phospholipids per Atg2 molecule and second. We propose that conserved PLT proteins cooperate in channeling phospholipids across organelle contact sites for non-rate-limiting membrane assembly during autophagosome biogenesis.
Assuntos
Autofagossomos , Proteínas de Saccharomyces cerevisiae , Autofagossomos/metabolismo , Fosfolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
The energy-dependent proteolysis of cellular proteins is mediated by conserved proteolytic AAA(+) complexes. Two such machines, the m- and i-AAA proteases, are present in the mitochondrial inner membrane. They exert chaperone-like properties and specifically degrade nonnative membrane proteins. However, molecular mechanisms of substrate engagement by AAA proteases remained elusive. Here, we define initial steps of substrate recognition and identify two distinct substrate binding sites in the i-AAA protease subunit Yme1. Misfolded polypeptides are recognized by conserved helices in proteolytic and AAA domains. Structural modeling reveals a lattice-like arrangement of these helices at the surface of hexameric AAA protease ring complexes. While helices within the AAA domain apparently play a general role for substrate binding, the requirement for binding to surface-exposed helices within the proteolytic domain is determined by the folding and membrane association of substrates. Moreover, an assembly factor of cytochrome c oxidase, Cox20, serves as a substrate-specific cofactor during proteolysis and modulates the initial interaction of nonassembled Cox2 with the protease. Our findings therefore reveal the existence of alternative substrate recognition pathways within AAA proteases and shed new light on molecular mechanisms ensuring the specificity of proteolysis by energy-dependent proteases.
Assuntos
Adenosina Trifosfatases/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteases Dependentes de ATP , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Modelos Moleculares , Dados de Sequência Molecular , Proibitinas , Dobramento de Proteína , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por SubstratoRESUMO
Autophagy is a conserved catabolic process critical for cell homeostasis with broad implications for aging and age-associated diseases. A defining feature of autophagy is the de novo formation of a specialized transient organelle, the double-membrane autophagosome. Autophagosomes originate from small vesicular precursors after rapid membrane expansion resulting in the engulfment of a broad spectrum of cytoplasmic cargoes within a few minutes for vacuolar or lysosomal degradation. Recent advances have provided exciting new insights into the molecular mechanisms underlying the assembly of autophagic membranes during autophagosome biogenesis. Specifically, the phospholipid biosynthesis activity of the endoplasmic reticulum and a dedicated membrane-tethering complex between nascent autophagosomes and the endoplasmic reticulum have emerged as key factors in autophagosome formation.
Assuntos
Autofagossomos , Autofagia , Retículo Endoplasmático , MacroautofagiaRESUMO
Autophagy is a highly conserved catabolic pathway critical for stress responses and the maintenance of cellular homeostasis. Defective autophagy contributes to the etiology of an increasing number of diseases including cancer, neurodegeneration, and diabetes. Cells have to integrate complex metabolic information in order to counteract metabolic challenges ranging from carbon, nitrogen, and phosphate to metal ion limitations. An unparalleled variety of cytoplasmic materials in size and nature can be transported into the lytic compartment for degradation and recycling by transient double-membrane compartments, termed autophagosomes, during macroautophagy. In this review, we will outline our current mechanistic understanding of how cells regulate the initiation of macroautophagy to target substrates nonselectively or selectively. With an emphasis on findings in the yeast system, we will describe the emerging principles underlying the regulation of autophagy substrate recognition, which critically shapes the scope of stress-adapted autophagy responses upon diverse metabolic challenges.
Assuntos
Autofagia , Estresse Fisiológico , Aminoácidos/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Metais/metabolismo , Mitocôndrias/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
During (macro)autophagy, cells form transient organelles, termed autophagosomes, to target a broad spectrum of substrates for degradation critical to cellular and organismal health. Driven by rapid membrane assembly, an initially small vesicle (phagophore) elongates into a large cup-shaped structure to engulf substrates within a few minutes in a double-membrane autophagosome. In particular, how autophagic membranes expand has been a longstanding question. Here, we summarize our recent work that delineates a pathway that drives phagophore expansion by localized de novo phospholipid synthesis. Specifically, we found that the conserved acyl-CoA synthetase Faa1 localizes to nucleated phagophores to locally activate fatty acids for de novo phospholipid synthesis in the neighboring ER. These newly synthesized phospholipids are then preferentially incorporated into autophagic membranes and drive the expansion of the phagophore into a functional autophagosome. In summary, our work uncovers molecular principles of how cells coordinate phospholipid synthesis and flux with autophagic membrane formation during autophagy.Abbreviations: ACS: acyl-CoA synthestases; CoA: coenzyme A; ER: endoplasmic reticulum.
Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Fosfolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologiaRESUMO
Lee et al. (2020. Nat. Cell Biol.https://doi.org/10.1038/s41556-019-0459-2) and, in this issue, Tomioka et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201910063) describe the targeted degradation of nuclear pore complexes (NPCs) by selective autophagy, providing insight into the mechanisms of turnover for individual nucleoporins and entire NPCs.
Assuntos
Autofagia , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/genéticaRESUMO
Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)-containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12-Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.
Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagossomos/química , Proteína 12 Relacionada à Autofagia/química , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/química , Proteína 5 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Lipossomas Unilamelares/metabolismoRESUMO
Derived from bacterial ancestors, mitochondria have maintained their own albeit strongly reduced genome, mitochondrial DNA (mtDNA), which encodes for a small and highly specialized set of genes. MtDNA exists in tens to thousands of copies packaged in numerous nucleoprotein complexes, termed nucleoids, distributed throughout the dynamic mitochondrial network. Our understanding of the mechanisms of how cells regulate the copy number of mitochondrial genomes has been limited. Here, we summarize and discuss our recent findings that Mip1/POLG (mitochondrial DNA polymerase gamma) critically controls mtDNA copy number by operating in 2 opposing modes, synthesis and, unexpectedly, degradation of mtDNA, when yeast cells face nutrient starvation. The balance of the 2 modes of Mip1/POLG and thus mtDNA copy number dynamics depends on the integrity of macroautophagy/autophagy, which sustains continuous synthesis and maintenance of mtDNA. In autophagy-deficient cells, a combination of nucleotide insufficiency and elevated mitochondrial ROS production impairs mtDNA synthesis and drives mtDNA degradation by the 3'-5'-exonuclease activity of Mip1/POLG resulting in mitochondrial genome depletion and irreversible respiratory deficiency. Abbrivations: mtDNA: mitochondrial DNA; mtDCN: mitochondrial DNA copy number.
Assuntos
Autofagia , DNA Mitocondrial , Variações do Número de Cópias de DNA , DNA Polimerase Dirigida por DNA , MitocôndriasRESUMO
Lipid droplets are conserved specialized organelles that store neutral lipids. Our view on this unique organelle has evolved from a simple fat deposit to a highly dynamic and functionally diverse hub-one that mediates the buffering of fatty acid stress and the adaptive reshaping of lipid metabolism to promote membrane and organelle homeostasis and the integrity of central proteostasis pathways, including autophagy, which ensure stress resistance and cell survival. This Review will summarize the recent developments in the budding yeast Saccharomyces cerevisiae, as this model organism has been instrumental in deciphering the fundamental mechanisms and principles of lipid droplet biology and interconnecting lipid droplets with many unanticipated cellular functions applicable to many other cell systems.
Assuntos
Homeostase/fisiologia , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Mitochondria contain tens to thousands of copies of their own genome (mitochondrial DNA [mtDNA]), creating genetic redundancy capable of buffering mutations in mitochondrial genes essential for cellular function. However, the mechanisms regulating mtDNA copy number have been elusive. Here we found that DNA synthesis and degradation by mtDNA polymerase γ (POLG) dynamically controlled mtDNA copy number in starving yeast cells dependent on metabolic homeostasis provided by autophagy. Specifically, the continuous mtDNA synthesis by POLG in starving wild-type cells was inhibited by nucleotide insufficiency and elevated mitochondria-derived reactive oxygen species in the presence of autophagy dysfunction. Moreover, after prolonged starvation, 3'-5' exonuclease-dependent mtDNA degradation by POLG adjusted the initially increasing mtDNA copy number in wild-type cells, but caused quantitative mtDNA instability and irreversible respiratory dysfunction in autophagy-deficient cells as a result of nucleotide limitations. In summary, our study reveals that mitochondria rely on the homeostatic functions of autophagy to balance synthetic and degradative modes of POLG, which control copy number dynamics and stability of the mitochondrial genome.