Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(1): F103-F112, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779750

RESUMO

α-1-Microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme-binding, and mitochondrial protection properties. The investigational drug RMC-035, a modified therapeutic A1M protein, was assessed for biodistribution and pharmacological activity in a broad set of in vitro and in vivo experiments, supporting its clinical development. Efficacy and treatment posology were assessed in various models of kidney ischemia and reperfusion injury (IRI). Real-time glomerular filtration rate (GFR), functional renal biomarkers, tubular injury biomarkers (NGAL and KIM-1), and histopathology were evaluated. Fluorescently labeled RMC-035 was used to assess biodistribution. RMC-035 demonstrated consistent and reproducible kidney protection in rat IRI models as well as in a model of IRI imposed on renal impairment and in a mouse IRI model, where it reduced mortality. Its pharmacological activity was most pronounced with combined dosing pre- and post-ischemia and weaker with either pre- or post-ischemia dosing alone. RMC-035 rapidly distributed to the kidneys via glomerular filtration and selective luminal uptake by proximal tubular cells. IRI-induced expression of kidney heme oxygenase-1 was inhibited by RMC-035, consistent with its antioxidative properties. RMC-035 also dampened IRI-associated inflammation and improved mitochondrial function, as shown by tubular autofluorescence. Taken together, the efficacy of RMC-035 is congruent with its targeted mechanism(s) and biodistribution profile, supporting its further clinical evaluation as a novel kidney-protective therapy.NEW & NOTEWORTHY A therapeutic A1M protein variant (RMC-035) is currently in phase 2 clinical development for renal protection in patients undergoing open-chest cardiac surgery. It targets several key pathways underlying kidney injury in this patient group, including oxidative stress, heme toxicity, and mitochondrial dysfunction. RMC-035 is rapidly eliminated from plasma, distributing to kidney proximal tubules, and demonstrates dose-dependent efficacy in numerous models of ischemia-reperfusion injury, particularly when administered before ischemia. These results support its continued clinical evaluation.


Assuntos
alfa-Globulinas , Rim , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , alfa-Globulinas/metabolismo , alfa-Globulinas/farmacologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças , Taxa de Filtração Glomerular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Camundongos , Heme Oxigenase-1/metabolismo , Ratos , Ratos Sprague-Dawley , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Distribuição Tecidual
2.
J Transl Med ; 22(1): 17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178089

RESUMO

BACKGROUND: Hemolysis is a cardinal feature of hemolytic uremic syndrome (HUS) and during hemolysis excess arginase 1 is released from red blood cells. Increased arginase activity leads to reduced L-arginine, as it is converted to urea and L-ornithine, and thereby reduced nitric oxide bioavailability, with secondary vascular injury. The objective of this study was to investigate arginase release in HUS patients and laboratory models and correlate arginase levels to hemolysis and kidney injury. METHODS: Two separate cohorts of patients (n = 47 in total) with HUS associated with Shiga toxin-producing enterohemorrhagic E. coli (EHEC) and pediatric controls (n = 35) were investigated. Two mouse models were used, in which mice were either challenged intragastrically with E. coli O157:H7 or injected intraperitoneally with Shiga toxin 2. An in vitro model of thrombotic microangiopathy was developed in which Shiga toxin 2- and E. coli O157 lipopolysaccharide-stimulated human blood cells combined with ADAMTS13-deficient plasma were perfused over glomerular endothelial cells. Two group statistical comparisons were performed using the Mann-Whitney test, multiple groups were compared using the Kruskal-Wallis test followed by Dunn's procedure, the Wilcoxon signed rank test was used for paired data, or linear regression for continuous variables. RESULTS: HUS patients had excessively high plasma arginase 1 levels and activity (conversion of L-arginine to urea and L-ornithine) during the acute phase, compared to remission and controls. Arginase 1 levels correlated with lactate dehydrogenase activity, indicating hemolysis, as well as the need for dialysis treatment. Patients also exhibited high levels of plasma alpha-1-microglobulin, a heme scavenger. Both mouse models exhibited significantly elevated plasma arginase 1 levels and activity. Plasma arginase 1 levels correlated with lactate dehydrogenase activity, alpha-1-microglobulin and urea levels, the latter indicative of kidney dysfunction. In the in vitro model of thrombotic microangiopathy, bioactive arginase 1 was released and levels correlated to the degree of hemolysis. CONCLUSIONS: Elevated red blood cell-derived arginase was demonstrated in HUS patients and in relevant in vivo and in vitro models. The excessively high arginase levels correlated to the degree of hemolysis and kidney dysfunction. Thus, arginase inhibition should be investigated in HUS.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Síndrome Hemolítico-Urêmica , Insuficiência Renal , Microangiopatias Trombóticas , Humanos , Criança , Animais , Camundongos , Toxina Shiga II , Células Endoteliais , Hemólise , Arginase , Síndrome Hemolítico-Urêmica/complicações , Síndrome Hemolítico-Urêmica/terapia , Eritrócitos , Microangiopatias Trombóticas/complicações , Ureia , Arginina , Ornitina , Lactato Desidrogenases , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/terapia
3.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000587

RESUMO

Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.


Assuntos
alfa-Globulinas , Octreotida , Proteômica , Animais , alfa-Globulinas/metabolismo , Camundongos , Octreotida/farmacologia , Octreotida/análogos & derivados , Proteômica/métodos , Proteínas Recombinantes/farmacologia , Rim/metabolismo , Rim/efeitos da radiação , Rim/efeitos dos fármacos , Masculino , Medula Óssea/efeitos da radiação , Medula Óssea/metabolismo , Medula Óssea/efeitos dos fármacos , Órgãos em Risco/efeitos da radiação , Proteoma/metabolismo , Protetores contra Radiação/farmacologia
4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362059

RESUMO

Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20) with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h. Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury, and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion, CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to prevent AKI after LuTx.


Assuntos
Injúria Renal Aguda , Hemoglobinas , Transplante de Pulmão , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/diagnóstico , Creatinina/química , Haptoglobinas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Transplante de Pulmão/efeitos adversos , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/metabolismo
5.
Dev Neurosci ; 43(5): 281-295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34218224

RESUMO

Following preterm birth, serum levels of insulin-like growth factor 1 (IGF-1) decrease compared to corresponding in utero levels. A recent clinical trial indicated that supplementation with recombinant human (rh) IGF-1/rhIGF-binding protein 3 (rhIGF-1/rhIGFBP-3) prevents severe intraventricular hemorrhage (IVH) in extremely preterm infants. In a preterm rabbit pup model, we characterized endogenous serum and hepatic IGF-1, along with brain distribution of IGF-1 and IGF-1 receptor (IGF1R). We then evaluated the effects of rhIGF-1/rhIGFBP-3 on gene expression of regulators of cerebrovascular maturation and structure. Similar to preterm infants, serum IGF-1 concentrations decreased rapidly after preterm birth in the rabbit pup. Administration of rhIGF-1/rhIGFBP-3 restored in utero serum levels but was rapidly eliminated. Immunolabeled IGF1R was widely distributed in multiple brain regions, displaying an abundant density in the choroid plexus and sub-ependymal germinal zones. Increased IGF-1 immunoreactivity, distributed as IGF1R, was detected 4 h after rhIGF-1/rhIGFBP-3 administration. The rhIGF-1/rhIGFBP-3 treatment led to upregulation of choroid plexus genes involved in vascular maturation and structure, with corresponding protein translation for most of these genes. The preterm rabbit pup model is well suited for evaluation of IGF-1-based prevention of IVH. Administration of rhIGF-1/rhIGFBP-3 affects cerebrovascular maturation, suggesting a role for it in preventing preterm IVH.


Assuntos
Fator de Crescimento Insulin-Like I , Nascimento Prematuro , Animais , Proteínas de Transporte , Humanos , Lactente Extremamente Prematuro , Recém-Nascido , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Coelhos , Proteínas Recombinantes
6.
J Neuroinflammation ; 18(1): 42, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573677

RESUMO

BACKGROUND: Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. An increased understanding of the causal pathways and metabolites involved in eliciting the damaging response following hemorrhage is essential for the continued development and implementation of neuroprotective treatments of GM-IVH in preterm infant. METHODS: We exposed immature primary rat mixed glial cells to hemorrhagic CSF obtained from preterm human infants with IVH (containing a mixture of Hb-metabolites) or to a range of pure Hb-metabolites, incl. oxidized Hb (mainly metHb with iron in Fe3+), oxyHb (mainly Fe2+), or low equivalents of heme, with or without co-administration with human Hp (a mixture of isotype 2-2/2-1). Following exposure, cellular response, reactive oxygen species (ROS) generation, secretion and expression of pro-inflammatory cytokines and oxidative markers were evaluated. RESULTS: Exposure of the glial cells to hemorrhagic CSF as well as oxidized Hb, but not oxyHb, resulted in a significantly increased rate of ROS production that positively correlated with the rate of production of pro-inflammatory and oxidative markers. Congruently, exposure to oxidized Hb caused a disintegration of the polygonal cytoskeletal structure of the glial cells in addition to upregulation of F-actin proteins in microglial cells. Co-administration of Hp partially reversed the damaging response of hemorrhagic CSF and oxidized Hb. CONCLUSION: Exposure of mixed glial cells to oxidized Hb initiates a pro-inflammatory and oxidative response with cytoskeletal disintegration. Early administration of Hp, aiming to minimize the spontaneous autoxidation of cell-free oxyHb and liberation of heme, may provide a therapeutic benefit in preterm infant with GM-IVH.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Hemoglobinas/metabolismo , Mediadores da Inflamação/metabolismo , Neuroglia/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Sistema Livre de Células/efeitos dos fármacos , Sistema Livre de Células/metabolismo , Hemorragia Cerebral/líquido cefalorraquidiano , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Hemoglobinas/administração & dosagem , Humanos , Recém-Nascido , Neuroglia/efeitos dos fármacos , Oxigênio/administração & dosagem , Ratos , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206377

RESUMO

Infiltration of red blood cells into atheromatous plaques and oxidation of hemoglobin (Hb) and lipoproteins are implicated in the pathogenesis of atherosclerosis. α1-microglobulin (A1M) is a radical-scavenging and heme-binding protein. In this work, we examined the origin and role of A1M in human atherosclerotic lesions. Using immunohistochemistry, we observed a significant A1M immunoreactivity in atheromas and hemorrhaged plaques of carotid arteries in smooth muscle cells (SMCs) and macrophages. The most prominent expression was detected in macrophages of organized hemorrhage. To reveal a possible inducer of A1M expression in ruptured lesions, we exposed aortic endothelial cells (ECs), SMCs and macrophages to heme, Oxy- and FerrylHb. Both heme and FerrylHb, but not OxyHb, upregulated A1M mRNA expression in all cell types. Importantly, only FerrylHb induced A1M protein secretion in aortic ECs, SMCs and macrophages. To assess the possible function of A1M in ruptured lesions, we analyzed Hb oxidation and heme-catalyzed lipid peroxidation in the presence of A1M. We showed that recombinant A1M markedly inhibited Hb oxidation and heme-driven oxidative modification of low-density lipoproteins as well plaque lipids derived from atheromas. These results demonstrate the presence of A1M in atherosclerotic plaques and suggest its induction by heme and FerrylHb in the resident cells.


Assuntos
alfa-Globulinas/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Peroxidação de Lipídeos , Oxirredução , Aterosclerose/patologia , Biomarcadores , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Células Cultivadas , Progressão da Doença , Suscetibilidade a Doenças , Hemorragia/metabolismo , Hemorragia/patologia , Humanos , Imuno-Histoquímica , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
8.
Neuroendocrinology ; 110(1-2): 130-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30999299

RESUMO

BACKGROUND/AIMS: Peptide receptor radionuclide therapy (PRRT) is becoming clinical routine for management of neuroendocrine tumours. The number of PRRT cycles is correlated with treatment effect but theoretically limited by off-target radiation damage to kidneys and bone marrow. New imaging biomarkers for assessment of PRRT tissue damage would enable evaluation of novel renal and bone marrow protective agents, as well as personalised PRRT treatment regiments. METHODS: Mice treated with [177Lu]Lu-DOTA-TATE PRRT or vehicle were examined at baseline and following treatment with [18F]fluorothymidine (FLT) positron emission tomography (PET) and technetium-99m-mercapto-acetyl-tri-glycine ([99mTc]Tc-Mag3) single-photon emission tomography (SPECT) to assess dynamic changes in bone marrow proliferation and renal function, respectively. RESULTS: Bone marrow proliferation as assessed by [18F]FLT was decreased 2 days after PRRT treatment, but not vehicle, compared to baseline (target-to-background ratio [TBRmax] baseline:1.69 ± 0.29 vs. TBRmax PRRT: 0.91 ± 0.02, p < 0.01). Renal function as assessed by [99mTc]Tc-Mag3 SPECT was similarly decreased 2 days following PRRT compared to vehicle (fractional uptake rate [FUR] vehicle: 0.030 ± 0.014 s-1 vs. FUR PRRT: 0.0051 ± 0.0028 s-1, p < 0.01). CONCLUSION: [18F]FLT PET and [99mTc]Tc-Mag3 SPECT are promising techniques for assessing bone marrow and renal injury from [177Lu]Lu-DOTA-TATE PRRT and may potentially improve patient management by allowing evaluation of protective interventions as well as enabling personalised PRRT treatments.


Assuntos
Medula Óssea/diagnóstico por imagem , Rim/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Lesões por Radiação/diagnóstico por imagem , Radioisótopos/efeitos adversos , Compostos Radiofarmacêuticos/efeitos adversos , Receptores de Peptídeos , Somatostatina/análogos & derivados , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Somatostatina/efeitos adversos
9.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008134

RESUMO

α1-microglobulin (A1M) is a small protein present in vertebrates including humans. It has several physiologically relevant properties, including binding of heme and radicals as well as enzymatic reduction, that are used in the protection of cells and tissue. Research has revealed that A1M can ameliorate heme and ROS-induced injuries in cell cultures, organs, explants and animal models. Recently, it was shown that A1M could reduce hemolysis in vitro, observed with several different types of insults and sources of RBCs. In addition, in a recently published study, it was observed that mice lacking A1M (A1M-KO) developed a macrocytic anemia phenotype. Altogether, this suggests that A1M may have a role in RBC development, stability and turnover. This opens up the possibility of utilizing A1M for therapeutic purposes in pathological conditions involving erythropoietic and hemolytic abnormalities. Here, we provide an overview of A1M and its potential therapeutic effect in the context of the following erythropoietic and hemolytic conditions: Diamond-Blackfan anemia (DBA), 5q-minus myelodysplastic syndrome (5q-MDS), blood transfusions (including storage), intraventricular hemorrhage (IVH), preeclampsia (PE) and atherosclerosis.


Assuntos
alfa-Globulinas/genética , Eritrócitos/metabolismo , Eritropoese/genética , Síndromes Mielodisplásicas/genética , alfa-Globulinas/metabolismo , Animais , Feminino , Heme/genética , Heme/metabolismo , Hemólise/genética , Homeostase , Humanos , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/terapia
10.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823731

RESUMO

Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.


Assuntos
alfa-Globulinas/farmacologia , Células Epiteliais/patologia , Heme/toxicidade , Túbulos Renais Proximais/patologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142923

RESUMO

Heme released from red blood cells targets a number of cell components including the cytoskeleton. The purpose of the present study was to determine the impact of free heme (20-300 µM) on human skeletal muscle fibres made available during orthopedic surgery. Isometric force production and oxidative protein modifications were monitored in permeabilized skeletal muscle fibre segments. A single heme exposure (20 µM) to muscle fibres decreased Ca2+-activated maximal (active) force (Fo) by about 50% and evoked an approximately 3-fold increase in Ca2+-independent (passive) force (Fpassive). Oxidation of sulfhydryl (SH) groups was detected in structural proteins (e.g., nebulin, α-actinin, meromyosin 2) and in contractile proteins (e.g., myosin heavy chain and myosin-binding protein C) as well as in titin in the presence of 300 µM heme. This SH oxidation was not reversed by dithiothreitol (50 mM). Sulfenic acid (SOH) formation was also detected in the structural proteins (nebulin, α-actinin, meromyosin). Heme effects on SH oxidation and SOH formation were prevented by hemopexin (Hpx) and α1-microglobulin (A1M). These data suggest that free heme has a significant impact on human skeletal muscle fibres, whereby oxidative alterations in structural and contractile proteins limit contractile function. This may explain and or contribute to the weakness and increase of skeletal muscle stiffness in chronic heart failure, rhabdomyolysis, and other hemolytic diseases. Therefore, therapeutic use of Hpx and A1M supplementation might be effective in preventing heme-induced skeletal muscle alterations.


Assuntos
Cisteína/metabolismo , Heme/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Miofibrilas/efeitos dos fármacos , Sequência de Aminoácidos , Cálcio/metabolismo , Cisteína/química , Humanos , Espectrometria de Massas/métodos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Miofibrilas/metabolismo , Miofibrilas/patologia , Oxirredução
12.
Dev Neurosci ; 41(3-4): 234-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31991415

RESUMO

Neonates born with critical congenital heart defects are at risk of diffuse white matter injuries and neurodevelopmental impairments. This study aimed to determine the impact of circulating cell-free hemoglobin and hyperoxia, both present during cardiopulmonary bypass circulation, on white matter brain development. Postnatal day 6 rat pups were injected intraperitoneally with cell-free Hb or vehicle and exposed to hyperoxia (fiO2 = 0.8) or normoxia (fiO2 = 0.21) for 24 h. We evaluated apoptosis, myelination, and oligodendrocyte maturation with immunohistochemistry, gene and protein analyses, and in vivo diffusion tensor magnetic resonance imaging (MRI). Consistent with previous studies, we found an increase in apoptosis of oligodendrocytes as determined by TUNEL+ staining in Olig2+ cells in white matter, cortex, thalamus, and hippocampus following exposure to hyperoxia with no additional effect of cell-free Hb. A transient increase in the mRNA expression of intercellular adhesion molecule 1 at 6 h was observed following combined exposure to cell-free Hb and hyperoxia. No indications of oligodendrocyte maturational delay or hypomyelination were observed after either insult, delivered separately or combined, as determined by immunohistochemistry, Western blot, and diffusion tensor MRI. In our model, exposure to circulatory cell-free Hb, with or without concomitant hyperoxia, did not significantly alter brain white matter development.


Assuntos
Lesões Encefálicas/patologia , Encéfalo/crescimento & desenvolvimento , Hemoglobinas/farmacologia , Hiperóxia/metabolismo , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Imagem de Tensor de Difusão/métodos , Modelos Animais de Doenças , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos Wistar , Substância Branca/efeitos dos fármacos
13.
J Neuroinflammation ; 16(1): 122, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174551

RESUMO

BACKGROUND: Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with cerebro-cerebellar damage in very preterm infants, leading to neurodevelopmental impairment. Penetration, from the intraventricular space, of extravasated red blood cells and extracellular hemoglobin (Hb), to the periventricular parenchyma and the cerebellum has been shown to be causal in the development of brain injury following GM-IVH. Furthermore, the damage has been described to be associated with the cytotoxic nature of extracellular Hb-metabolites. To date, there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. Mechanisms previously described to cause brain damage following GM-IVH, i.e., oxidative stress and Hb-metabolite toxicity, suggest that the free radical and heme scavenger α1-microglobulin (A1M) may constitute a potential neuroprotective intervention. METHODS: Using a preterm rabbit pup model of IVH, where IVH was induced shortly after birth in pups delivered by cesarean section at E29 (3 days prior to term), we investigated the brain distribution of recombinant A1M (rA1M) following intracerebroventricular (i.c.v.) administration at 24 h post-IVH induction. Further, short-term functional protection of i.c.v.-administered human A1M (hA1M) following IVH in the preterm rabbit pup model was evaluated. RESULTS: Following i.c.v. administration, rA1M was distributed in periventricular white matter regions, throughout the fore- and midbrain and extending to the cerebellum. The regional distribution of rA1M was accompanied by a high co-existence of positive staining for extracellular Hb. Administration of i.c.v.-injected hA1M was associated with decreased structural tissue and mitochondrial damage and with reduced mRNA expression for proinflammatory and inflammatory signaling-related genes induced by IVH in periventricular brain tissue. CONCLUSIONS: The results of this study indicate that rA1M/hA1M is a potential candidate for neuroprotective treatment following preterm IVH.


Assuntos
alfa-Globulinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Hemorragia Cerebral Intraventricular/etiologia , Hemorragia Cerebral Intraventricular/patologia , Sequestradores de Radicais Livres/farmacologia , Nascimento Prematuro , Animais , Animais Recém-Nascidos , Feminino , Humanos , Masculino , Gravidez , Coelhos , Distribuição Aleatória
14.
FASEB J ; 32(10): 5436-5446, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29723064

RESUMO

Cell free hemoglobin impairs vascular function and blood flow in adult cardiovascular disease. In this study, we investigated the hypothesis that free fetal hemoglobin (fHbF) compromises vascular integrity and function in the fetoplacental circulation, contributing to the increased vascular resistance associated with fetal growth restriction (FGR). Women with normal and FGR pregnancies were recruited and their placentas collected freshly postpartum. FGR fetal capillaries showed evidence of erythrocyte vascular packing and extravasation. Fetal cord blood fHbF levels were higher in FGR than in normal pregnancies ( P < 0.05) and the elevation of fHbF in relation to heme oxygenase-1 suggests a failure of expected catabolic compensation, which occurs in adults. During ex vivo placental perfusion, pathophysiological fHbF concentrations significantly increased fetal-side microcirculatory resistance ( P < 0.05). fHbF sequestered NO in acute and chronic exposure models ( P < 0.001), and fHbF-primed placental endothelial cells developed a proinflammatory phenotype, demonstrated by activation of NF-κB pathway, generation of IL-1α and TNF-α (both P < 0.05), uncontrolled angiogenesis, and disruption of endothelial cell flow alignment. Elevated fHbF contributes to increased fetoplacental vascular resistance and impaired endothelial protection. This unrecognized mechanism for fetal compromise offers a novel insight into FGR as well as a potential explanation for associated poor fetal outcomes such as fetal demise and stillbirth.-Brook, A., Hoaksey, A., Gurung, R., Yoong, E. E. C., Sneyd, R., Baynes, G. C., Bischof, H., Jones, S., Higgins, L. E., Jones, C., Greenwood, S. L., Jones, R. L., Gram, M., Lang, I., Desoye, G., Myers, J., Schneider, H., Hansson, S. R., Crocker, I. P., Brownbill, P. Cell free hemoglobin in the fetoplacental circulation: a novel cause of fetal growth restriction?


Assuntos
Células Endoteliais/metabolismo , Retardo do Crescimento Fetal/sangue , Hemoglobina Fetal/metabolismo , Placenta , Circulação Placentária , Resistência Vascular , Adulto , Células Endoteliais/patologia , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Heme Oxigenase-1/sangue , Humanos , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/patologia , Placenta/fisiopatologia , Gravidez
15.
Dev Neurosci ; 39(6): 487-497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28972955

RESUMO

Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population.


Assuntos
Cerebelo/crescimento & desenvolvimento , Fator de Crescimento Insulin-Like I/biossíntese , Tamanho do Órgão/fisiologia , Células de Purkinje/citologia , Animais , Animais Recém-Nascidos , Feminino , Idade Gestacional , Lactação/fisiologia , Neurogênese/fisiologia , Gravidez , Coelhos
16.
Pediatr Res ; 79(1-1): 70-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26372519

RESUMO

BACKGROUND: The role of vascular endothelial growth factor (VEGF) in the pathogenesis of retinopathy of prematurity (ROP) has been clearly established. However, little is known about temporal changes in circulating VEGF concentrations in the preterm infant. The objective was to determine the longitudinal serum concentrations of VEGF in relation to ROP. METHODS: This study included 52 infants born at <31 wk gestational age (non-ROP n = 33, nonproliferative ROP n = 10, treated for ROP n = 9). VEGF concentrations were analyzed in blood samples collected at birth, at 3 d postnatal age, and then weekly until at least a gestational age of 35 wk. RESULTS: VEGF concentrations at birth did not differ between groups, independent of later ROP status. In contrast, VEGF serum concentrations were significantly higher at first detection of ROP in infants who were later treated for ROP compared to infants without ROP. At the time of laser therapy, serum VEGF concentrations did not differ between groups. CONCLUSION: Circulatory concentrations of VEGF, in infants who later developed severe ROP, were elevated at the time when ROP first was detected but not at the time when current treatment most often occurred. This supports the need for further studies of circulating VEGF in relation to the timing of ROP treatment.


Assuntos
Recém-Nascido Prematuro/sangue , Retinopatia da Prematuridade/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Comorbidade , Feminino , Sangue Fetal/química , Idade Gestacional , Humanos , Recém-Nascido , Doenças do Recém-Nascido/sangue , Terapia a Laser , Masculino , Projetos Piloto , Estudos Prospectivos , Retinopatia da Prematuridade/cirurgia
18.
Curr Hypertens Rep ; 17(9): 584, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26232922

RESUMO

Preeclampsia (PE) is a serious pregnancy-related condition that causes severe maternal and fetal morbidity and mortality. Within the recent years, there has been an increasing focus in predicting PE at the end of the first trimester of pregnancy. In this review, literature published between 2011 and 2015 was evaluated. In a total of six biomarker algorithms, for first and early second trimester, the prediction of preeclampsia is discussed. In addition, one randomized clinical trial was included. Several algorithms were based on placental biomarkers such as pregnancy-associated plasma protein A (PAPP-A), placental growth factor (PLGF), and soluble FMS-like tyrosine kinase 1 (s-FLT-1). The algorithms containing these biomarkers showed a high prediction rate (PR) for early onset PE, ranging from 44 to 92 % at 5 % false positive rate (FPR). New biomarkers suggest an alternative model based on free HbF and the heme scavenger alpha-1-microglobulin (A1M) with a prediction rate of 69 % at an FPR of 5 %. Interestingly, this model performs well without uterine artery Doppler pulsatility index (UtAD-PI), which is an advantage particularly if the screening method were to be implemented in developing countries. The randomized clinical trial showed a clear reduction in early onset PE as well as reducing preterm PE if identified high-risk pregnancies were treated with low-dose aspirin. In conclusion, PE prediction is now possible through several prediction algorithms and prophylaxis is beneficial in high-risk cases.


Assuntos
Pré-Eclâmpsia , Algoritmos , Biomarcadores/sangue , Feminino , Humanos , Pré-Eclâmpsia/diagnóstico , Gravidez , Primeiro Trimestre da Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
BMC Pulm Med ; 15: 19, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25851169

RESUMO

BACKGROUND: Secretory leukocyte protease inhibitor (SLPI) is a protein with anti-protease and antimicrobial properties that is constitutively secreted from the airway epithelium. The importance of maintaining a balance between proteases and anti-proteases, and robust innate defence mechanisms in the airways, is exemplified by inflammatory lung conditions such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Both conditions present with a high protease burden in the airways which leads to tissue destruction. These patients also have an impaired innate immune system in the lungs with bacterial colonization and frequent airway infections. Moreover, both diseases are associated with airway hypoxia due to inflammation and mucus plugs. The aim of the present study was to investigate the role of hypoxia on SLPI production from the airway epithelium. METHODS: Primary human bronchial epithelial cells were grown in sub-immersed cultures or as differentiated epithelium in air liquid interface cultures. Cells were incubated at 21% O2 (normoxia) or 1% O2 (hypoxia), and the release of SLPI was analysed with ELISA. RT-PCR was used to study the expression of SLPI and transforming growth factor ß1 (TGF-ß1). RESULTS: Hypoxia decreased the constitutive production of SLPI by bronchial epithelial cells. The multifunctional cytokine TGF-ß1, which is known to affect SLPI expression, showed increased expression in hypoxic bronchial epithelial cells. When bronchial epithelial cells were exposed to exogenous TGF-ß1 during normoxia, the SLPI production was down-regulated. Addition of TGF-ß1-neutralizing antibodies partially restored SLPI production during hypoxia, showing that TGF-ß1 is an important regulator of SLPI during hypoxic conditions. CONCLUSIONS: The mechanism described here adds to our knowledge of the pathogenesis of severe pulmonary diseases associated with hypoxia, e.g. COPD and CF. The hypoxic down-regulation of SLPI may help explain the protease/anti-protease imbalance associated with these conditions and vulnerability to airway infections. Furthermore, it provides an interesting target for the treatment and prevention of exacerbation in these patients.


Assuntos
Células Epiteliais/metabolismo , Hipóxia/genética , RNA Mensageiro/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/genética , Fator de Crescimento Transformador beta1/genética , Brônquios/citologia , Brônquios/metabolismo , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Hipóxia/metabolismo , Elastase de Leucócito/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
20.
Int J Mol Sci ; 16(12): 30309-20, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26694383

RESUMO

Peptide receptor radionuclide therapy (PRRT) has been in clinical use for 15 years to treat metastatic neuroendocrine tumors. PRRT is limited by reabsorption and retention of the administered radiolabeled somatostatin analogues in the proximal tubule. Consequently, it is essential to develop and employ methods to protect the kidneys during PRRT. Today, infusion of positively charged amino acids is the standard method of kidney protection. Other methods, such as administration of amifostine, are still under evaluation and show promising results. α1-microglobulin (A1M) is a reductase and radical scavenging protein ubiquitously present in plasma and extravascular tissue. Human A1M has antioxidation properties and has been shown to prevent radiation-induced in vitro cell damage and protect non-irradiated surrounding cells. It has recently been shown in mice that exogenously infused A1M and the somatostatin analogue octreotide are co-localized in proximal tubules of the kidney after intravenous infusion. In this review we describe the current situation of kidney protection during PRRT, discuss the necessity and implications of more precise dosimetry and present A1M as a new, potential candidate for renal protection during PRRT and related targeted radionuclide therapies.


Assuntos
alfa-Globulinas/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Substâncias Protetoras/metabolismo , Receptores de Peptídeos/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Radiometria , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA